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ABSTRACT. We develop a stochastic target representation for Ricci flow and normalized Ricci flow
on smooth, compact surfaces, analogous to Soner and Touzi’s representation of mean curvature flow.
We prove a verification/uniqueness theorem, and then consider geometric consequences of this sto-
chastic representation.

Based on this stochastic approach we give a proof that, for surfaces of non-positive Euler char-
acteristic, the normalized Ricci flow converges to a constant curvature metric exponentially quickly
in every Ck-norm. In the case of C0 and C1-convergence, we achieve this by coupling two parti-
cles. To get C2-convergence (in particular, convergence of the curvature), we use a coupling of three
particles. This triple coupling is developed here only for the case of constant curvature metrics on
surfaces, though we suspect that some variants of this idea are applicable in other cases too. At any
rate, this triple coupling provides a purely probabilistic approach to getting second-order derivative
estimates for second-order PDEs. Finally, for k ≥ 3, the Ck-convergence follows relatively easily
using induction and coupling of two particles.

1. INTRODUCTION

In [23], Soner and Touzi give a characterization of various extrinsic geometric flows (with
ambient space Rn), including mean curvature flow, as stochastic target problems. More specif-
ically, they introduce the relevant target problems and then prove associated verification theo-
rems, namely theorems showing that if the curvature flow has a smooth solution for an interval
of time t ∈ [0, T ), then the solution agrees with the solution to the stochastic target problem on
this interval. In the first part of this paper, we develop a similar characterization of Ricci flow (and
normalized Ricci flow) on compact surfaces, including the relevant verification theorems (see The-
orem 3). We then briefly brief discuss time-dependent bounds on the solution to both normalized
and un-normalized Ricci flow and estimates on the blow-ups of solutions to Ricci flow in the cases
of non-zero Euler characteristic, all obtained from the stochastic formulation of the flow. In the
remainder of the paper, we use this stochastic representation to prove that, for a smooth, com-
pact surface of non-positive Euler characteristic, given that a smooth solution to the normalized
Ricci flow exists for all time (which is well-known from the literature), it converges to a constant
curvature metric exponentially fast in C∞ (see Theorem 22 for a precise statement).

Ricci flow on smooth, compact surfaces is essentially completely understood, so none of the
geometric results in this paper are new. Nonetheless, one feature of our approach is that probabil-
ity often provides an appealing intuition, as in the case of Brownian motion and heat flow. Thus,
if Ricci flow is thought of as a kind of “heat equation for curvature,” it is natural to want to extend
the analogy to include a diffusion interpretation. For example, it’s nice to see the convergence of a
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manifold under normalized Ricci flow to a constant curvature limit as the equidistribution of the
metric, and as a result of the curvature, from a probabilistic perspective.

More generally, one might ask about the potential merits of developing stochastic techniques
for Ricci flow (or other curvature flows). One obvious point to be made here is that one gets a
representation of the solution and, at least in the theory of linear second order PDEs, this has
turned out to be extremely versatile in extracting properties of the solutions. As we will see, the
stochastic tools we employ are good enough to give a different proof of a main result in the theory
of Ricci flow on surfaces with the bonus that we see the “averaging property of the curvature” as a
consequence of coupling, which is a probabilistic manifestation of ergodicity. Another motivation
for such an endeavor is that the stochastic target formulation is fairly insensitive to regularity, and
thus potentially useful in formulating notions of weak solutions. Indeed, in a second paper, Soner
and Touzi [22] show that generalized solutions to various extrinsic curvature flows can also be
understood in terms of stochastic target problems. Also stemming from these ideas, we note that
stochastic approaches to PDEs can lend themselves to the development of probabilistic numerical
schemes (as in [12]), but we do not touch this subject here.

Our framework is not the most general one. We presumably could have worked in a little more
generality, but to keep the ideas as appealing and clear as possible, we decided to study surfaces,
which are the traditional starting point for studying Ricci flow.

We point out that, as noted in [6], stochastic target problems of certain kind are equivalent to
second-order backward stochastic differential equations. As discussed there, second-order back-
ward SDEs are natural stochastic objects to associate with fully non-linear PDEs. Thus, one could
presumably recast the results of this paper in those terms. Nonetheless, we have chosen to adopt
the stochastic target approach because it seems more geometrically intuitive and visually appeal-
ing, and because it puts Ricci flow and mean curvature flow in a similar framework.

There are few papers on stochastic analysis and Ricci flow, for instance [19, 18, 2, 17, 9, 1]. The
ones that are somewhat close to our work are [9] and [1]. These papers investigate the Brownian
motion (and the associated parallel transport) with respect to a time changing metric on a manifold
of any dimension, not only on surfaces. Using stochastic analysis they also develop a Bismut-
like formula to represent the gradient of solutions to heat-type flows with respect to the time-
dependent metric. In particular, this leads to gradient estimates for the corresponding solutions.

At any rate, though the Bismut formula is very useful for gradient estimates, we do not know
how to get a nice and useful version of this formula for second-order derivatives. This is one of
the reasons we prefer to deal with an alternative probabilistic tool, namely coupling. This idea
for dealing with the second-order derivatives comes from [10], where a coupling of three particles
is used to estimate second-order derivatives of harmonic functions on Euclidean domains. This
triple coupling indicated by Cranston uses a certain symmetry to get a key cancellation in the
estimation of the Hessian. This symmetry is not surprising in the flat case. However, there are
obvious technical challenges for a similar construction on manifolds, and the way it works in
the flat case does not seem to work on arbitrary manifolds. Nevertheless, it turns out that we
can construct such a triple coupling which has enough good properties in the case of surfaces of
constant curvature.

We continue with a few more observations about the present work. We do not prove the exis-
tence of solutions to the target problem directly; rather, the verification theorems proceed from the
assumption that the Ricci flow admits a smooth solution. In the case of normalized Ricci flow, we
have long-time existence as proved in [3] and [14]. However, an immediate consequence of such
a verification theorem is that the solution (to the flow) is unique.
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In contrast to the standard proof of the convergence to constant curvature, we deal directly
with the metric itself (and its derivatives), rather than introducing an auxiliary PDE satisfied by
the curvature. We use uniformization to work with an underlying metric which has constant
curvature and is in the same conformal class as the initial metric. One might hope to extend these
arguments to more general situations, but for a first paper on this approach uniformization makes
the analysis cleaner and reveals the power of the coupling in a nice way.

The outline of the paper is as follows. We first describe the stochastic target problem in Section 2
giving a fair amount of detail, since it is a somewhat non-standard control problem. Then, in Sec-
tion 3 we prove the verification/uniqueness theorem, namely that, if there is a smooth solution to
the Ricci flow (or normalized Ricci flow) on some interval of time, then it agrees with the solution
to the stochastic target problem.

Section 4 is a short section showing how one can use the representation to prove that the un-
normalized Ricci flow develops singularities (in certain cases) either in finite time or in infinite
time. In Section 5, we develop the a priori bounds for the stochastic target problem. As a con-
sequence, we obtain the exponential convergence in the C0-norm of the normalized flow in the
case of χ(M) < 0 (as usual, χ(M) denotes the Euler characteristic of M ). We also include a short
discussion of the blow up of the unnormalized Ricci flow in the cases χ(M) > 0 and χ(M) < 0,
which is in tune with the previous section’s findings, although this time assuming uniformization.

Section 6 introduces and proves the main result on mirror coupling for the time changed Brow-
nian motions associated to the target problems. This coupling makes sense for short times, but
the main challenge is to show that the coupling extends beyond the cut locus. This is done using
the geometric structure of the cut locus on surfaces of Euler characteristic less than or equal to 0.
We should also point out that there is a coupling of Brownian motions constructed with respect to
time-varying metrics (such as Ricci flow) in [17], but it differs from our situation here.

In Section 7 we start the main analysis of the convergence of normalized Ricci flow. We prove
the nontrivial fact that in Euler characteristic zero, the normalized flow converges exponentially
fast in the C0-topology. This uses the result from the previous section combined with the compar-
ison of the distance process with a Bessel process in order to estimate the coupling time, which is
a fundamentally probabilistic idea. Combining this result with those coming from the a priori es-
timates proves that, for non-positive Euler characteristic, the flow convergence in the C0-topology
exponentially fast.

The next task is to prove that the convergence takes place also in C1, or in other words that
the gradient of the metric converges exponentially fast. This is done in Section 8, again using
coupling. However, the point here is a little different. We use the coupling for particles started
close to one another and estimate the coupling time in terms of the gradient of the metric and the
initial distance. This in turn yields a functional inequality satisfied by the C0-norm of the gradient
which is contained in Lemma 12. It turns out that this functional inequality is strong enough to
produce the exponential convergence.

Going forward, Section 9 is dedicated to the triple coupling used in a crucial way for the Hes-
sian estimates. We exploit in an essential way the constant curvature properties of the underlying
metric. We have two mirror coupled particles x and y and another middle particle z which is
moving on the geodesic between them which is described by the distance ρ1 from z to x, or al-
ternatively, the distance ρ2 from z to y. One of the main interests is the symmetry with respect to
swapping ρ1 and ρ2. The other thing thrust of the investigation is as follows. Assuming that x and
y are time changed Brownian motions, we study the conditions under which z is a time changed
Brownian motion with a drift. This is a key point in the Hessian estimates.
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Section 10 covers the Hessian estimates. Here we use the results from the previous sections, for
instance, the exponential decay of the flow in the C1-topology and the triple coupling. As in the
case of the gradient we end up with a functional inequality for the C0-norm of the Hessian as in
Lemma 21. It turns out that this suffices to conclude the exponential convergence.

The last section proves the Ck-convergence of the flow. This is done essentially using the Ricci
flow equation and induction. It is important to mention here that in the flat case, we still have to
use the coupling.

A few words about the sphere case, which definitely requires some finer analysis. There are
several obstacles we have to overcome. On one hand, the a priori estimates give bounds which
blow up in finite or infinite time. However, these estimates are simply bounds of a stochastic
differential equation in terms of the ODE in which the martingale is killed off, and eventually
can likely be refined. Further, in the case of non-positive Euler characteristic, there is a unique
stationary solution to the normalized Ricci flow with a given volume (in a given conformal class),
and thus one has to prove that the flow converges to this uniquely determined solution. In the
case of the sphere this is not the case and thus convergence is harder to establish, because we do
not know beforehand toward which stationary solution the flow wants to converge (this is related
to the issue of Ricci solitons). Therefore, the strategy we used in this paper for χ(M) ≤ 0 needs
some refinements if it’s to address the case of positive Euler characteristic.

2. STOCHASTIC TARGET FORMULATION

2.1. Ricci flow. Consider a smooth, compact Riemannian surface (M,h), that is, M is a smooth,
compact manifold of dimension two and h a smooth Riemannian metric on M . Any other smooth
metric in the same conformal class as h can be written as g = uh for some smooth, positive function
u. The Ricci curvature of any metric metric g is given by

(1) 2Ricg = Rg = 2Kgg,

where Rg is the scalar curvature and Kg is the Gauss curvature. The Ricci flow is defined as the
evolution of the metric gt according to

(2) ∂tgij = −2Ricij

where Ric is the Ricci tensor. From this, it is easy to see that the Ricci flow preserves the conformal
class in two dimensions, and thus it becomes an evolution equation for the conformal factor ut. In
particular, the Ricci flow corresponds to u evolving by

(3) ∂tut = ∆h log ut − 2Kh

where Kh is the Gauss curvature of (M,h). In passing from (2) to (3), we have already used the
fact that if g = uh, for two metrics, g and h, then (see [8, Exercise 2.8])

(4) Rg =
1

u
(Rh −∆h log u)

where the ∆h is the Laplacian with respect to the metric h.
This is a non-linear parabolic equation, and thus the usual probabilistic methods of solution

(diffusions, Feynman-Kac, etc.) don’t apply. Instead, we will adopt a stochastic target approach
modeled on the approach of [23] to mean curvature flow, as mentioned above.

To be more concrete, we assume that the initial metric onM can be written as g0 = u0h for some
smooth, positive u and some metric h. There are two natural choices for h. Of course, we can let
h = g0 and u0 ≡ 1. Alternatively, the uniformization theorem implies that there is a metric in the
same conformal class as g0 which has constant curvature of −1, 0, or 1. Then we can take h to
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be this metric, in which case u0 is determined by the condition that g0 = u0h. We will find the
flexibility of this set-up to be useful.

As usual, we also wish to introduce the normalized Ricci flow, which is defined as

(5) ∂tgij = −2Ricij + 2rgij

where r is the average of the Gauss curvature on M with respect to the metric g. Written in terms
of the conformal factor, this is

∂tūt = ∆h log ū− 2Kh + 2rtūt.

Under this flow, the surface is continually rescaled to preserve the area. Indeed, the Gauss-
Bonnet Theorem tells us that the integral of the scalar curvature is∫

KgdAg = 2πχ(M)

where χ(M) is the Euler characteristic of M and Ag is the area element of the metric g. Conse-
quently, if rt is the average of the Gauss curvature for gt, then

rt =
2πχ(M)

area(M, gt)

where area(M, g) stands for the area of M with the metric g. From here, a straightforward calcu-
lation gives that

∂t area(M, gt) = ∂t

∫
ūtdAh =

∫
∂tūtdAh = −2

∫
KhdAh + 2rt

∫
ūtdAh = 0,

which shows that the area is preserved under this evolution and, in particular, rt does not depend
on t. Therefore the flow (5) preserves the area and

(6) r =
2πχ(M)

area(M, g0)
.

We can now translate (5) into an equation satisfied by the conformal change ūt as (recall that
gt = ūth)

(7) ∂tūt = ∆h log ū− 2Kh + 2rūt

with r the constant from (6).
As is implicit in the above, we see that the set of all smooth metrics (on M ) in a given confor-

mal class corresponds to the set of smooth sections of a one-dimensional bundle over M . More
concretely, fixing a “reference metric” h and writing any other (smooth) metric (in the same con-
formal class) as uh induces a global coordinate u on fibers of this bundle making the total space
E diffeomorphic to M × (0,∞). Further, u is given as the composition of the lift from M to E
(corresponding to the section) with u. This helps to explain the notation: u is a coordinate on the
fibers, and u is the expression of a section in this coordinate. Because our bundle admits natural
global coordinates, we will almost always work in these coordinates, and thus we won’t have
much occasion to consider sections in a coordinate-free notation.

Viewed in this light, it is natural to introduce a new coordinate on the fibers. Let p = (1/2) log u.
Then any other metric in the same conformal class as h can be written as g = e2ph for some smooth
function p : M → R, which is given by the composition of the lift M → E (corresponding to the
section) with p. This coordinate makes the bundle into a real line bundle. In particular, the metric
h corresponds to the zero section, and fiberwise addition corresponds to composition of conformal
changes. However, we won’t need the vector space structure on fibers in what follows; we really
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just view the fibers as having a smooth structure. In terms of the coordinate p, the Ricci flow
equation becomes

(8) ∂tpt = e−2pt (∆hpt −Kh) ,

and the normalized Ricci flow equation becomes (see also [20, Equation 1.3.1])

(9) ∂tpt = e−2pt (∆hpt −Kh) + r.

with r the constant defined in (6) and thus depending only on the are of M with respect to the
initial metric g0.

At this point, we see that there is a one-to-one correspondence between metrics in the same
conformal class as h, sections of E over M , and functions p (where all of these objects are assumed
to be smooth). Further, there is a one-to-one correspondence between smooth sections and smooth
hypersurfaces of E that intersect each fiber once and do so transversely; under composition with
p this is the same as the correspondence between smooth functions on M and their graphs in
M ×R. Viewing metrics as hypersurfaces in the total space E provides a framework for studying
Ricci flow which is fairly similar to that of mean curvature flow and well-suited for the stochastic
target approach. Our next task is to define the appropriate target problem.

2.2. The target problem. Let Γ(0) be the hypersurface corresponding to the initial metric g0. In
spite of our previous efforts to distinguish between sections over M from their description in a
particular coordinate, in what follows we will fix the global coordinate p on fibers, thus identifying
the fibers with R, and formulate everything in those terms. In particular, Γ(0) corresponds to the
graph of p0. The stochastic target problem is, for any time t, the problem of determining the set
of points such that the controlled process, starting from such a point, can be made to hit Γ(0) (the
“target”) in time t almost surely. Obviously, this requires specifying the allowed controls and the
processes they give rise to. We will generally explain things for the Ricci flow and then indicate
the analogous results for the normalized Ricci flow in situations where there are no additional
complications.

We start with the infinitesimal picture in normal coordinates. We choose any point (q, p̂) ∈
M × R and let (x1, x2) be normal coordinates around q. Thus (x1, x2, p) are coordinates on a
neighborhood of {q} × R. We assume that the controlled process is currently at (q, p̂), say at time
τ . The (x1, x2)-marginal of the controlled process will be (infinitesimally) Brownian motion on
M (with fixed reference metric h), time-changed by 2e−2p̂. The control consists of choosing a lift
of the tangent plane to M at q into the tangent space to E at (q, p̂). The controlled process has
its martingale part diffusing (infinitesimally) along this lifted plane in the unique way that gives
the right (x1, x2)-marginal, and has its drift along the fiber at rate e−2p̂Kh (plus an additional
−2πχ(M)/ area(M,h) for the normalized Ricci flow). More precisely, the control consists of a
choice of (a1, a2) ∈ R2, for which the processes evolves (infinitesimally, assuming the process is at
(q, p̂) at time τ ) according todx1,τ

dx2,τ

dpτ

 =

 e−p̂ 0
0 e−p̂

e−p̂a1 e−p̂a2

[√2 dW 1
τ√

2 dW 2
τ

]
+

 0
0

e−2p̂Kh(q)

 .
where W 1 and W 2 are one-dimensional Brownian motions. Here we have written Kh(q) to em-
phasize that the curvature depends on the point in M . The

√
2 factors (in front of the Brownian

differentials) are needed because the Ricci flow is defined using the Laplacian, instead of half the
Laplacian, and rather than use a non-standard normalization for the Ricci flow, we choose to speed
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up our Brownian motions (this is analogous to the usual discrepancy between the analysts’ and
the probabilists’ versions of the heat equation). This is the controlled process, at least infinites-
imally, corresponding to the Ricci flow. For the normalized Ricci flow, the set of controls is the
same, but the process evolves according todx1,τ

dx2,τ

dpτ

 =

 e−p̂ 0
0 e−p̂

e−p̂a1 e−p̂a2

[√2 dW 1
τ√

2 dW 2
τ

]
+

 0
0

e−2p̂Kh(q)− r

 .
We point out that, for both the Ricci flow and the normalized Ricci flow, the (infinitesimal)

diffusion matrix is  2e−2pτ 0 2e−2pτa1

0 2e−2pτ 2e−2pτa2

2e−2pτa1 2e−2pτa2 2e−2pτ (a2
1 + a2

2)


in (x1, x2, p) coordinates at (q, p̂), of course.

Having given the infinitesimal picture, we now extend this to a global description. While it is
tempting to simply assert that this follows immediately from the local description, we prefer to
give a more explicit formulation. There is more than one way to do this, but we choose to use the
bundle of orthonormal frames on (M,h). The immediate difficulty with extending the above local
picture is that, except in special cases (more on which below), we cannot find coordinates which
are normal at more than one point at a time, or even a global orthonormal frame. The solution we
have in mind is to use the bundle of orthonormal frames to supply each point along the evolving
process with an orthonormal frame and its associated normal coordinates. In particular, let O(M)
be the bundle of orthonormal frames over (M,h), consisting of points (q, e(q)) where q ∈ M and
e(q) is an orthonormal basis for TqM with metric h. We identify e(q) with the corresponding
linear isometry from R2 to TqM . Let e1 and e2 be the standard basis for R2 and let E(ei) be the
corresponding canonical vector fields. Further, we let π : O(M)→ M be the usual projection and
π∗ : TO(M)→ TM be the induced push-forward map on tangent spaces.

The connection with the previous infinitesimal picture comes from the following relationship
between the canonical vector fields and normal coordinates. Choose a point q ∈ M and a frame
e(q) over q, and let (x1, x2) be normal coordinates (for (M,h)) in a neighborhood of q such that
∂xi = e(q)(ei) at q. Obviously, π∗

[
E(ei)|(q,e(q))

]
= ∂xi |q. Moreover, let s be a smooth section of

O(M) in a neighborhood of q which is equal to e(q) at q and horizontal at q, meaning that ∂xis are
horizontal vectors at q. Then π∗ [E(ei) ◦ s] agrees with ∂xi to first-order around q. (Indeed, to show
that such a section s exists, start with normal coordinates and apply the Gram–Schmidt process to
{∂x1 , ∂x2} at every point in a neighborhood of q.)

We also recall the connection between the bundle of orthonormal frames and Brownian motion
on (M,h). We have that

(
E(e1)2 + E(e2)2

)
/2 is Bochner’s Laplacian onO(M), and the correspond-

ing martingale problem is well-posed (in the sense of Stroock and Varadhan, namely that there is a
unique solution for any initial point). We use B̃τ to denote such a process. Projecting B̃τ toM gives
Brownian motion on M , which we denote Bτ . This is the well-known Eells-Elworthy-Malliavin
construction of Brownian motion onM and we refer the reader to [15] or[24] for a detailed account
on the subject. Moreover, the process B̃τ on O(M) should be thought of as the horizontal lift of
Bτ on M , and thus as giving Brownian motion equipped with parallel transport. In particular,
this is how we will typically understand B̃τ , as Brownian motion on M endowed with parallel
transport. Finally, we note that the solution to the martingale problem for Bochner’s Laplacian
can be realized as the (unique) strong solution to the natural SDE driven by a standard Brownian
motion on R2, or equivalently, two independent, one-dimensional Brownian motions. That is, B̃τ
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can be realized as the solution to

dB̃τ = E(e1) ◦ dW 1
τ + E(e2) ◦ dW 2

τ

where ◦dW indicates that the differential is to be understood in the Stratonovich sense.
We now have the necessary background to give the global formulation of the stochastic target

problem for Ricci flow (and the related target problem for normalized Ricci flow). We write points
inE as (x, p) ∈M×R and the controlled process (for the Ricci flow) as Yτ = (xτ , pτ ). As suggested
above, the M -marginal xτ will be Brownian motion on M , time-changed by p, and thus we know
from the above that we have parallel transport of frames (for TxM ) along the paths xt (note that the
frame is always orthonormal relative to the metric h). In particular, if we choose a frame e(x0) at
the starting point, then we let e(xτ ) denote the parallel transport of this frame along xτ . Abstractly,
the control consists in choosing a lift of TxτM to T(xτ ,pτ )E. In terms of our evolving frame, such
lifts can be identified with points of R2. This the time to formally introduce the control process.
In what follows, (Ω,F ,P) is a probability space where the Brownian motion (W 1,W 2) is defined
and the reference filtration involved here is Fτ , the one generated by the Brownian motion.

Definition 1. For a fixed time t > 0, an admissible control process A is a bounded map A : [0, t] ×M ×
Ω → R2 which is continuous in the first two coordinates, and such that for each (x, τ) ∈ M × [0, t],
A(τ, x) : Ω→ R2 is Fτ -measurable. We write this in components A = (a1, a2).

We will explain below in the first remark of this section why we require the control to be
bounded.

If we start our process from a point Y0 = (x0, p0) equipped with a frame e(x0) of Tx0M , then it
evolves according to the SDE (note that we’re using both Itô and Stratonovich differentials)

dxτ = e−pτ

[
2∑
i=1

e(xτ )(ei)
√

2 ◦ dW i
τ

]

dpτ = e−pτ

[
2∑
i=1

ai
√

2 dW i
τ

]
+ e−2pτKh(xτ ) dτ.

(10)

Here we see that e(xτ )(ei) is just the projection onto M of E(ei) and to ease the notation we will
also use the shortcut e(xτ )(ei) = ei(xτ ), or even more simply ei, if there is no confusion generated
by dropping xτ . In particular, the horizontal lift of xτ , which we write x̃τ = (xτ , e(xτ )) evolves
according to

dx̃τ = e−pτ

[
2∑
i=1

E(ei)
√

2 ◦ dW i
τ

]
on O(M),

and the first line of (10) is just the projection of this onto M . We choose to write (10) in this fashion
in order to emphasize that we’re ultimately only interested in the evolution of the surface in E
and not in the frame; the frame is only used as a convenience in order to express the control and
the corresponding SDE. We do this despite that fact that (10) requires evolving the frame e(xτ ) as
well.

The mixing of Itô and Stratonovich differentials in (10) is a result of the fact that horizontal
Brownian motion (or just Brownian motion on M ) is not easily written globally in Itô form. To
clarify this, we give the following equivalent characterization, which is just a consequence of Itô’s
formula. For any smooth function ϕ : [0, T ]×M×R→ R (assuming that the process (xτ , pτ ) exists
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for τ ∈ [0, T ]),

dϕ(τ, xτ , pτ ) =e−pτ
2∑
i=1

(ei(xτ )ϕ+ aiϕ
′)
√

2dW i
τ

+

(
∂τϕ+ e−2pτKh(xτ )ϕ′ + e−2pτ∆hϕ+ e−2pτ

2∑
i=1

a2
iϕ
′′ + 2e−2pτ

2∑
i=1

ai(eiϕ)ϕ′

)
dτ

(11)

where all the “inside” functions are evaluated at (τ, xτ , pτ ), ei(x)ϕ signifies the derivative (along
ei(x)) with respect to the second variable of ϕ, ∂τϕ is the derivative with respect to τ variable, and
the prime is the partial derivative with respect to p. Note that if we let (x1, x2) be appropriate
normal coordinates at a point, then applying this to x1, x2, and p shows that, at that point, this
agrees with the infinitesimal picture described above.

We now take a moment to discuss what we mean by asserting the the controlled process arises
from the control via the SDEs just mentioned. We understand these (systems of) SDEs in the
weak sense, that is the choice of driving Brownian motions (W 1

τ ,W
2
τ ) is part of the solution, not

prescribed in advance. Of course, for an arbitrary choice of controls, a solution need not exist, and
if it does, it may not be unique in law. We will have more to say about this later, after we introduce
the target problem.

Now that we’ve specified the admissible controls Aτ and described the evolution of controlled
process Yτ (A) that a choice of control gives rise to, it’s time to explain how this gives rise to a
subset of E.

Definition 2. We define the reachable set at a given time t ∈ [0,∞), denoted V (t), to be the set of points
in E for which there exists an admissible control such that the controlled process, started at this point and
with this control, is in Γ(0) at time t almost surely.

We follow Soner and Touzi [23] in calling this the reachable set, even though it’s the set of points
you can reach a fixed target from, not the set of points you can reach from a fixed starting point.
In order for this to be well-defined, we need to show that V (t) doesn’t depend on the initial choice
of frame. Suppose Aτ is a control such that Yτ (A), started from y ∈ E with initial frame e(y), hits
Γ(0) at time t almost surely (so that y ∈ V (t)). If ẽ(y) is any other (orthonormal) frame at y, then
there is some r ∈ O(2) such that e(y) = rẽ(y). It’s clear that Aτr is such that Yτ (Ar), started from
y ∈ E with initial frame ẽ(y), hits Γ(0) at time t almost surely. Thus a point of E is in the reachable
set or not independent of what frame we use to express the controlled process, and so the V (t) are
well-defined.

For a point in the reachable set, we will indicate the control in the definition by Â, if necessary
indicating the point in V (t) by writing Â(x0, p0) or Â(Y0), and call it a successful control (this seems
linguistically more appropriate than optimal control). In light of the fact that this depends on the
initial choice of frame, a successful control should really be thought of as a family of controls
indexed by O(2). However, since the dependence on the initial frame is so simple and not our
primary focus, we will generally gloss over this. We will also write Yτ (Â) as Ŷτ . Thus, the defining
property of a point in V (t) and the associated successful control is that if we start the process at
this point in V (t), then Yt(Â) ∈ Γ(0) almost surely. This necessarily requires that, for a successful
control Â, there exists a solution to Equation (10) and thus a corresponding process Yτ (Â) for all
time t ∈ [0, t]. In particular, one might imagine that some choice of control gives rise to a solution
under which pτ blows up prior to t (xτ can’t blow up since M is compact), but such a control
cannot be a successful control by definition. The definition does not require that a successful
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control gives rise to a solution Yτ (Â) which is unique in law, despite the fact that our notation
makes it look as though Yτ is always determined byA. (So it is conceivable that a successful control
might give rise to another solution Y ′τ that doesn’t almost surely hit the target.) Nonetheless, we
will see below that, as long as a smooth solution to the Ricci flow exists, there is essentially only
one choice of successful control starting from a given point of V (t), that it is well-behaved, and
that this control uniquely determines Ŷτ .

Finally, we recall that the stochastic target problem is the determination of the reachable sets
V (t). We note that V (0) = Γ(0); understanding V (t) for positive t and its relationship to Ricci
flow is the topic of the next section. Looking ahead, what we will prove is that, assuming the Ricci
flow has a smooth solution for some interval of time, that solution agrees with the solution to the
stochastic target problem in the sense that V (t) = Γ(t) at all times in this interval.

Naturally, we have an analogous set-up which we associate with the normalized Ricci flow.
The set of admissible controls remains the same, but now the controlled process, which we denote
Y n
τ (A) (the “n” in the superscript standing for “normalized”) evolves according to

dxτ = e−pτ

[
2∑
i=1

e(xτ )(ei)
√

2 ◦ dW i
τ

]

dpτ = e−pτ

[
2∑
i=1

ai
√

2 dW i
τ

]
+
(
e−2pτKh(xτ )− r

)
dτ.

(12)

Note that the only difference from Yτ is that the drift of pτ has an extra term.
We denote the corresponding reachable sets by V n(t). We also have the analog of Equation (11)

where e−2pτKh there is replaced by e−2pτKh − r:

dϕ(τ, xτ , pτ ) =e−pτ
2∑
i=1

(ei(xτ )ϕ+ aiϕ
′)
√

2dW i
τ

+

(
∂τϕ+

(
e−2pτKh(xτ )− r

)
ϕ′ + e−2pτ∆hϕ+ e−2pτ

2∑
i=1

a2
iϕ
′′ + 2e−2pτ

2∑
i=1

ai(eiϕ)ϕ′

)
dτ.

(13)

Remark. We want to discuss why we insist that our control (a1, a2) is in L∞. We begin by describing a
simpler situation which illustrates the essential point. Suppose we consider a real-value controlled process
given by

dxt = at dWt, x0 = 1,

where at is an adapted real-valued function which serves as the control. If we consider the goal to be to
make the process xt hit 0 in within time 1 (and we stop the process when it hits 0), then we would like to
assert that this is impossible, because, for instance, it would violate the martingale property of xt. However,
without some additional restriction on at, this will not be the case. For example, consider the following
scheme for controlling the process. For t ∈ [0, 1/2), we let a be the constant such that the process has
probability 1/2 of hitting 0 by time t = 1/2. It is clear that this is possible, since letting a be constant means
that xt is simply a time-changed Brownian motion, and we know that Brownian motion almost surely hits
the origin in finite time, no matter where it is started from. Then at t = 1/2, the process has hit 0 and
been stopped with probability 1/2. If it hasn’t, then x1/2 is some positive value. Again, we can find some
constant value for a, depending only on x1/2, such that if we let at equal that constant for t ∈ [1/2, 3/4),
then the process hits 0 in that interval of time with probability 1/2. Thus, by time t = 3/4, the process has
hit 0 with probability 3/4. Now we can iterate this procedure, at each step using up half of the remaining
time, in order to get xt to hit 0 with probability 1 by time t = 1. If we do this, the resulting process xt will
no longer be a martingale on the interval t ∈ [0, 1] but instead merely a local martingale. Part of the point
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is that this is a simple trick. We can think of at as determining a time-change so that xt is a time-changed
Brownian motion, and since we know Brownian motion hits the origin in finite time, if we’re allowed to
speed up time as much as we’d like we can simply compress the entire lifetime of the Brownian motion
prior to the first time it hits the origin into a finite interval.

We now return to the target problem we associate to Ricci flow. In light of the above, if we assumed only
that (a1, a2) was adapted, we could imagine a similar procedure of choosing the control to be very large so
that, from any starting point, we could cause it to hit pt−τ (this is a moving target, but it varies in a smooth
fashion and stays bounded) by time t. Once it hits pt−τ , we could then “switch” to the successful control
described in the next section in order to hit p0 as time t. The result would be that every point would be
in V (t), which is obviously not what we want. Of course, what we’ve just described uses a discontinuous
control, but one can imaging smoothing it to get a continuous analogue. At any rate, the underlying logic
of this “bad” control justifies our wish to avoid unbounded controls.

Requiring that (a1, a2) be bounded prevents this kind of easy trick and forces a successful control to re-
spect the geometry of the situation. Of course, one might imagine that there might be other, less restrictive,
ways to achieve this, such as requiring the controls to be in some Lp-space for finite p or requiring some nat-
ural coordinate to be a martingale, as opposed to merely a local martingale. Indeed, if one were to extend
this stochastic target formulation to include, say, non-compact surfaces, it seems like some weaker assump-
tion on the control would be appropriate. However, for the present paper, we have no need to speculate on
what other conditions one might want in other circumstances.
Remark. We close this section by noting that, in the case when (M,h) is flat (and thus either a torus or
a Klein bottle), the orthonormal frame bundle is unnecessary. In particular, uniformization implies that
(M,h) is isometric to R2 modulo the action of the group of Deck transformations Λ. If we let x1 and x2
be the usual Euclidean coordinates on R2, then h = dx21 + dx22 (after identifying M with R2/Λ). Further,
(W 1

τ ,W
2
τ ) is Brownian motion on (M,h), once we take it modulo Λ. In this case, the set of controls are

adapted, time-continuous, bounded maps into {(a1, a2) : ai ∈ R}, and the controlled process simplifies, so
that it is given, for both Ricci and normalized Ricci flow, by the SDEdx1,τdx2,τ

dpτ

 =

 e−pτ 0
0 e−pτ

e−pτa1 e−pτa2

[√2 dW 1
τ√

2 dW 2
τ

]
.

Convention. Throughout this paper very often we will have a fixed time t > 0 so that the stochastic target
problem is defined on [0, t] or the (normalized) Ricci flow is defined up to time t. Since the process time
is always going to be in [0, t], all the stopping times involved will always be minimized with t so that the
stopped process is well defined.

Also, the constants involved in the main estimates may change from line to line in such a way that they
do not depend on time t.

3. VERIFICATION AND THE CONNECTION WITH RICCI FLOW

At this point, we’ve described a pair of closely related stochastic target problems, namely the
determination of V (t) and V n(t), which we associate with Ricci flow and normalized Ricci flow,
respectively. However, we’ve given no justification for these associations. In the present section,
we prove that, under the assumption that a solution to the Ricci flow exists, the solution is given
by the reachable sets. This justifies the introduction of these particular stochastic target problems
in the context of Ricci flow.

Continuing with the notation of the previous section, we suppose that there is a smooth solution
pt to the Ricci flow, that is, to Equation (8), with initial condition p0 on the interval t ∈ [0, T ) (where
we allow the possibility that T =∞). At each time t, we can associate the solution with a section of
E over M and thus with a submanifold of the total space E, which is smooth and intersects each
fiber once, transversely. We call the resulting submanifolds Γ(t) and note that this extends our
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earlier definition of Γ(0). Of course, knowing the Γ(t) for t ∈ [0, T ) is equivalent to knowing pt.
Similarly, suppose there is a smooth solution pnt to the normalized Ricci flow, that is, to Equation
(9), with initial condition pn0 = p0 on the interval t ∈ [0, Tn) (where, for the same manifold (M,h)
with the same initial metric g0, it is not necessarily true that T and Tn are equal). Then we have
the associated submanifolds Γn(t) of E. The connection between the Ricci flow and normalized
Ricci flow (viewed in this way) and the stochastic target problems introduced above is given by
the following theorem. Note that both this sort of result and the method of proof mirror that of
[23]. The main additional complication, besides the geometric formalism needed for the general
statement of the target problem, is that the controls are not restricted to a compact set.

Theorem 3. Let (M,h) be a smooth, compact Riemannian surface with initial metric g0 = e2p0h, as above.
Suppose that the Ricci flow has a smooth solution pt on t ∈ [0, T ). Then Γ(t) = V (t) for all t ∈ [0, T ).
Similarly, if the normalized Ricci flow has a smooth solution pnt on t ∈ [0, Tn), then Γn(t) = V n(t) for all
t ∈ [0, Tn).

Proof. We start with the Ricci flow. We fix some t ∈ (0, T ) and let τ be the time parameter for the
controlled process Yτ (A), τ ∈ [0, t] (as usual in probabilistic approaches to PDEs, process time runs
“backward” compared to PDE time). We consider the square of the vertical distance between the
controlled process Yτ and Γ(t− τ). That is, we consider η(x, p, τ) =

(
p− pt−τ (x)

)2 along the paths
of Yτ , so that ητ =

(
pτ − pt−τ (xτ )

)2.
Actually, we begin by considering a slightly more general quantity. Let ξ(x, p, τ) = p− pt−τ (x),

and for the moment let ϕ : R→ [0,∞) be any smooth function. We wish to consider ϕ(ξ(x, p, τ));
clearly η is just the special case ϕ(z) = z2.

We now apply Itô’s formula (11) to (ϕ(ξ))τ . In the following, p is always evaluated at time
t − τ and position xτ , we write ei for e(xτ )(ei), and we suppress other arguments (such as for the
controls ai) as desired to make things more readable. Then we have

d(ϕ(ξ))τ =
√

2ϕ′e−pτ
[
(a1 − e1p) dW

1
τ + (a2 − e2p) dW

2
τ

]
+

2∑
i=1

e−2pτ
[
ϕ′′ (−eip)2 + ϕ′

(
−e2

i p
)]
dτ + ϕ′∂tp dτ

+ e−2pτ
[
ϕ′Kh + ϕ′′

(
a2

1 + a2
2

)]
dτ + 2e−2pτϕ′′ [−a1e1p− a2e2p] dτ.

(14)

Recall that e2
1 + e2

2 is just ∆h. Then a little algebra and the fact that p satisfies Equation (8) allows
us to simplify this, yielding

(15) d(ϕ(ξ))τ =
√

2ϕ′e−pτ
[
(a1 − e1p) dW

1
τ + (a2 − e2p) dW

2
τ

]
+
{
e−2pτϕ′′

[
(a1 − e1p)

2 + (a2 − e2p)
2
]

+ ϕ′
(
e−2p − e−2pτ

)
(∆hp−Kh)

}
dτ.

We now return to considering η. In this case, this equation specializes to

(16) dητ = 2
√

2 (pτ − p) e−pτ
[
(a1 − e1p) dW

1
τ + (a2 − e2p) dW

2
τ

]
+ 2e−2pτ

[
(a1 − e1p)

2 + (a2 − e2p)
2
]
dτ + 2 (pτ − p)

(
e−2p − e−2pτ

)
(∆hp−Kh) dτ.

First we show that any point (x, pt(x)) in Γ(t) is in V (t). Obviously, this is true for t = 0. Now
choose t > 0. We choose our controls a1 and a2 as follows: For τ ∈ [0, t], we let a1 be e1pt−τ (xτ )
and a2 be e2pt−τ (xτ ). Thus, our controls are Markov with respect to the process’ position and
the time (and the “current” frame, although this is largely just a convention, as discussed above).
Intuitively, all we are doing is trying to cause the process to be tangent to the evolving solution
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given by p. Our controls are not only Markov in space and time, but they are given by evaluating
smooth functions of space and time (and the lift of “space” into the orthonormal frame bundle)
along the controlled process, and thus we know that the system of SDEs for Yτ has a unique
strong solution. In particular, Yτ is uniquely determined by these controls. Using these controls,
Equation (16) simplifies to

dητ = 2 (pτ − p)
(
e−2p − e−2pτ

)
(∆hp−Kh) dτ.

Because p is smooth onM×[0, T ) andM is compact, we know that both pt−τ (x) and ∆hpt−τ (x)−
Kh are bounded on (x, τ) ∈ M × [0, t]. Now choose any δ > 0 and let θδ = inf{τ : ητ ≥ δ} be
the first hitting time of δ. Also observe that both the controlled process Yτ = (xτ , pτ ) and ητ have
continuous paths. If we stop our process at θδ, then pτ is also bounded (this follows from the fact
that p is bounded and the definition of η). Combining the boundedness of both p and pτ with an
easy estimate for the exponential function, we see that e−2p−e−2pτ is bounded above and below by
a constant multiple of ± (pτ − p), respectively. It follows that (for τ ≤ θδ), we have dητ ≤ Cητ dτ ,
for some positive constant C depending on t, δ, and the bounds mentioned above. Recalling that
η0 = 0, because we start our controlled process on Γ(t), and integrating gives

ητ∧θδ ≤ C
∫ τ∧θδ

0
ηs ds for τ ∈ [0, t].

Then Gronwall’s lemma implies that ητ∧θδ = 0 for all τ ∈ [0, t]. Because ητ has continuous paths,
this means that θδ > t, and thus we have that ητ = 0 for all τ ∈ [0, t]. In particular, ηt = 0, and so
Yt ∈ Γ(0). Thus we’ve shown that Γ(t) ⊂ V (t).

Next, we need to show the opposite inclusion, V (t) ⊂ Γ(t). Again, this is clear for t = 0, so we
fix some t ∈ (0, T ). We have some starting point (α, β) ∈ M × R, and we assume that there exists
a control (a1, a2) such that Yτ (a1, a2) almost surely hits Γ(0) at time τ = t.

At this point, we produce a mollified version of η by a judicious choice of ϕ. In particular, we
now let ϕ : R→ [0,∞) be a smooth, symmetric function satisfying the following additional prop-
erties: ϕ is non-decreasing on [0,∞), ϕ(z) = z2 in some neighborhood of 0, and ϕ is constant on
[A,∞) for an appropriately chosen constant A. It follows that the value of ϕ on [A,∞) is positive,
ϕ is 0 only at 0, and all derivatives of ϕ are bounded. If we now let η̂(x, p, τ) = ϕ(ξ(x, p, τ)), then
η̂ is a mollified version of η, in the sense that they agree for small values of η but η̂ is bounded,
along with all of its derivatives.

Let D(τ) = E [η̂τ ]. Then Equation (15) shows that

(17)

D(τ) = D(0) +

∫ τ

0
E
[
e−2pτϕ′′

[
(a1 − e1p)

2 + (a2 − e2p)
2
]

+ ϕ′
(
e−2p − e−2pτ

)
(∆hp−Kh)

]
ds.

Here, of course, the derivatives of ϕ are evaluated at ξ(xτ , pτ , τ). Note that e1p, e2p and ∆hp−Kh

are all bounded. Also, for small ξ we have that ϕ′′ = 2 and ϕ′ = 2 (pτ − p), and both of these
derivatives are bounded for all ξ. Moreover, both e−2pτϕ′′ and ϕ′

(
e−2p − e−2pτ

)
are bounded

because the derivatives of ϕ are identically zero for ξ > A. In addition, for any two constants
C1, C2 ≥ 0, there is another constant C3 > 0 such that for any ξ ∈ R,

C1ϕ
′′(ξ)− C2ϕ

′(ξ)ξ ≥ −C3ϕ(ξ)

Combining all of these with the fact that a1 and a2 are bounded, we see that there is some
positive constant C (different from the one above) depending on the bounds just mentioned, but



14 NEEL AND POPESCU

not on τ , such that

D(τ) ≥ D(0)− C
∫ τ

0
D(s) ds for all τ ∈ [0, t].

This is trivially equivalent to

−D(τ) ≤ −D(0) + (−C)

∫ τ

0
(−D(s)) ds for all τ ∈ [0, t].

Applying Gronwall’s inequality for the function −D(τ) on this interval then yields

−D(τ) ≤ (−D(0)) e−Cτ for all τ ∈ [0, t].

In particular, letting τ = t and multiplying by −1 gives D(0)e−Ct ≤ D(t). By assumption, the
controlled process hits Γ(0) at time t a.s., and thus D(t) = 0. Since D is always non-negative
(because ϕ was chosen to be non-negative) and e−Ct is positive, we conclude that D(0) = 0. This
is equivalent to saying that our initial point (α, β) is in Γ(t). Thus we have proven that V (t) ⊂ Γ(t).

The proof for the normalized Ricci flow is almost identical. With the appropriate quantities,
p̄, pτ , xτ and so on, equation (14) becomes

d(ϕ(ξ))τ =
√

2ϕ′e−pτ
[
(a1 − e1p) dW

1
τ + (a2 − e2p) dW

2
τ

]
+

2∑
i=1

e−2pτ
[
ϕ′′ (−eip)2 + ϕ′

(
−e2

i p
)]
dτ + ϕ′∂tp dτ

+ e−2pτ
[
ϕ′Kh − re2pτ + ϕ′′

(
a2

1 + a2
2

)]
dτ + 2e−2pτϕ′′ [−a1e1p− a2e2p] dτ.

(18)

and then from (9), we get exactly the same equation from (15), thus the rest of the proof is identical.
�

From the point of view of control theory, the above result is a verification theorem. From the
point of view of PDE theory, this can also be thought of as a uniqueness theorem. In particular, it
shows that smooth solutions to the Ricci flow are unique and we state this in the following.

Corollary 4. If there is a (smooth) solution to (normalized) Ricci flow on the time interval [0, T ), then it is
unique.

It bears repeating that the above relies on already knowing that the Ricci flow has a smooth
solution on some interval; in other words, it sheds no light on the existence of a solution (to either
the Ricci flow or the control problem). On the other hand, this existence is well known in the
present case. Cao [3] and Hamilton [14] show that, for a smooth, compact initial surface, the Ricci
flow always has a smooth solution on some (non-trivial) interval of time, and the normalized
Ricci flow has a smooth solution for all time. (Of course, much more can be said, including the
relationship between the normalized and un-normalized flows, but again, this is well-known and
can be found in any book on the subject.) For an accessible overview we refer to [7, Chapter 5],
which treats the (normalized) Ricci flow on surfaces.

One additional feature of the successfully controlled process is that it provides Brownian motion
on M under the backward Ricci flow (or backward normalized Ricci flow, of course), as we now
explain. If we put a smooth family of metrics gτ on a smooth manifold M , then a process Bτ is
a Brownian motion on (M, gτ ) if it solves the martingale problem for the time-inhomogeneous
operator ∆gτ . Suppose we have a smooth solution to the Ricci flow, as above, for t ∈ [0, T ), and
let gt be the metric on M corresponding to this solution. Then if we choose a time t (in (0, T ))
and point x0 ∈ M , there is a unique point (x0, p0) over x0 (where, of course, we use our standard
fiber coordinate p) in Γ(t) = V (t). If we now run our successfully controlled process Yτ = (xτ , pτ )
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starting from this point, we know that it is on Γ(t − τ) for all τ ∈ [0, t), or equivalently that
pτ = pt−τ (xτ ), for all τ ∈ [0, t] almost surely. Then looking at xτ (which is just the M -marginal)
and recalling that gt = e2pth, a little thought shows that xτ is a Brownian motion on (M, gt−τ ) for
τ ∈ [0, t]. That “process time” runs backward compared to “PDE” time, which manifests itself in
the t− τ parameter (with t fixed and τ increasing) for the metric g, explains why we get Brownian
motion on M under backward Ricci flow, as opposed to just Ricci flow.

For clarity, let us temporarily denote xτ under the successful control as x̂τ . Then recognizing
it as Brownian motion under backward Ricci flow gives a way of representing the solution to the
Ricci flow (or normalized Ricci flow) that looks more like the usual representations for parabolic
(linear) PDEs. In the special case when h is flat, normalized and un-normalized Ricci flow are the
same, and we see that pτ is a martingale. Further, we have that

(19) pt(x0) = Ex0,t [p0 (x̂t)]

where the expectation is taken with respect to the successfully controlled process started from
(x0, pt(x0)) and run until τ = t. This is analogous to solving the heat equation with some initial
condition by running Brownian motion and then using it to average the initial condition. The
difference is that, for the heat equation, we can construct Brownian motion (or more analytically,
the heat kernel) without already having a solution to the heat equation with our initial data. This
is because Brownian motion (or the heat kernel) doesn’t depend on the initial data, and so we can
use it to solve the heat equation in the first place. All of this is a manifestation of the linearity of
the heat equation. In the case of Ricci flow, we need to know p̂τ in order to determine x̂τ (or more
accurately, these two are intertwined by the system of SDEs they solve), so we can’t first determine
x̂τ and then use it in the above to solve the Ricci flow.

Also, we can now say a bit more about the recent work of [9] and [1]. They give a lift of
Brownian motion on a manifold with time-dependent metric to the frame bundle which gives
the parallel transport along the Brownian paths. They then introduce a notion of damped paral-
lel transport which, under the Ricci flow (but not the normalized flow), becomes an isometry as
well. This damped parallel transport can be used to produce martingales from solutions to heat
problems under the Ricci flow. In our notation, xτ is the Brownian motion with respect to a time-
dependent metric (with an additional factor of

√
2 to get the normalization right, of course), and

{e−pτ e(xτ )(e1), e−pτ e(xτ )(e2)} (which is an orthonormal frame for the time-varying metric) gives
the parallel transport along the Brownian path xτ .

4. THE BLOW UPS OF THE RICCI FLOW FOR THE CASE OF POSITIVE OR NEGATIVE EULER
CHARACTERISTIC

This section is dedicated to showing that in the case of the (unnormalized) Ricci flow, there are
blow ups either in finite or infinite time if the Euler charaterisitc, and hence the reference metric
Kh, is either positive or negative.

Assume now that the Ricci flow has a smooth solution defined on the time interval [0, T ). Then,
from Theorem 3, we learn that for any fixed time t ∈ [0, T ), pτ = pt−τ (xτ ) where (xτ , pτ ) is the
solution to (10) with the initial conditions (x, p0(x)). On the other hand, taking a smooth function
ϕ : [0, t]× R→ R in (11), we obtain that

dϕ(τ, pτ ) = e−pτϕ′(pτ )

2∑
i=1

ai
√

2dW i
τ +

[
∂τϕ(τ, pτ ) + e−2pτ (ϕ′(τ, pτ )Kh(xτ ) + ϕ′′(τ, pτ )

2∑
i=1

a2
i )

]
dτ.
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Since the successful control is given by ai = eipt−τ , we get
2∑
i=1

a2
i = |∇pt−τ (xτ )|2,

and this means that

ϕ(τ, pτ )−
∫ τ

0

[
∂τϕ(σ, pσ) + e−2pσ

(
ϕ′(σ, pσ)Kh(xσ) + ϕ′′(σ, pσ)|∇p̄t−σ(xσ)|2

)]
dσ

is a martingale. In particular, taking expectation at times τ = 0 and τ = t and using pτ = p̄t−τ (xτ ),
yields

ϕ(0, p̄t(x)) =E(x,t)[ϕ(t, p0(xt))]

−
∫ t

0
E(x,t)

[
∂tϕ(σ, pσ) + e−2pσ

(
ϕ′(σ, pσ)Kh(xσ) + ϕ′′(σ, pσ)|∇p̄t−σ(xσ)|2

)]
dσ.

(20)

There are two obvious obstructions stemming from this formula. The first one is that if Kh(x) > 0
for all x ∈M , then taking ϕ(τ, p) = e2p, the above formula (20) implies

e2p̄t(x) = E(x,t)[e2p0(xt)]−2

∫ t

0
E(x,t)

[
Kh(xσ) + 2|∇p̄t−σ(xσ)|2

]
dσ ≤ E(x,t)[e2p0(xt)]−2

∫ t

0
E(x,t)[Kh(xσ)]dσ

and thus, upon denoting the uniform norm by | · |u and taking K0 = infx∈M Kh(x),

e2p̄t(x) ≤ e2|p0|u − 2tK0.

As this is true for any t ∈ [0, T ), the extinction time of the Ricci flow is finite and is certainly at
most e2|p0|u/(2K0). Therefore, in the case of positive curvature the flow develops singularities in
finite time.

On the other hand if the curvature is negative (Kh < 0 on M ) then there are some constants
C1, C2 > 0 such that

p̄t(x) ≥ log(C1t+ 1)− C2 for all x ∈M and t ≥ 0.

To see this, take K0 = infx∈M −Kh(x) > 0, thus Kh(x) ≤ −K0 < 0 and then consider ϕ(τ, p) = p
in (20) to deduce that

p̄t(x) = E(x,t)[p0(xt)]−
∫ t

0
E(x,t)[e−2pσKh(xσ)]dσ ≥ inf

x∈M
p0

which means that p̄t(x) is bounded below uniformly in t ≥ 0 and x ∈ M . Now consider the
test function ϕ(τ, p) = exp

(
α(t− τ − 1

2K0
e2p)

)
. Since p̄t(x) is bounded below, this implies that

for large enough α, ϕ′′(σ, pσ) ≥ 0. On the other hand, ∂τϕ(σ, p) − K0e
−2pϕ′(σ, p) = 0, and this

combined with the preceding and the fact that ϕ′ is negative leads to

ϕ(0, p̄t(x)) ≤ Et,x[ϕ(t, p0(xt))] ≤ 1,

which means that p̄t(x) ≥ 1
2 log(2K0t) for any t > 0 for which p̄t exists. In particular this shows

that either the flow ceases to exist after a finite time, or, if it does exist for all times, p̄t(x) goes to
infinity uniformly over x ∈ M . The moral is that we can not expect the Ricci flow to converge as
the time approaches either the extinction time or infinity.

For the flat case, since the curvature is 0, the normalized and the unnormalized Ricci flows are
the same and thus we will treat this case as the normalized Ricci flow.
Remark. The blow up in the negative case does not take place in finite but this requires more arguments.
However we see this
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5. TIME-DEPENDENT A PRIORI BOUNDS FOR RICCI FLOW

We now turn our attention to using the stochastic target representation for the normalized Ricci
flow to derive (more accurately, of course, to re-derive) geometric facts about the flow. We will
always work with the case where the reference metric h has constant curvature. By uniformiza-
tion, this is no loss of generality, and it simplifies the analysis considerably. After a preliminary
rescaling, we can assume that this constant curvature is either 1, 0, or −1. Further, we can rescale
the initial metric g0 so that it has the same area as h. Thus, without loss of generality, we are in one
of three cases (by the Gauss-Bonnet theorem). First, if the Euler characteristic of M is positive, we
have that Kh ≡ r ≡ 1. If the Euler characteristic of M is zero, we have that Kh ≡ r ≡ 0. Finally,
when the Euler characteristic of M is negative we have that Kh ≡ r ≡ −1. The bounds we have
in mind are similar in all three cases, although the differences in sign of Kh result in important
differences.

We call these bounds “a priori” because they don’t depend on the structure of the reachable set.
We elaborate on this after Theorem 6.

We have one more comment about notation before we begin. Because we will be concerned
with the normalized Ricci flow for the rest of the paper, we drop the “n” superscripts. Thus, for
instance, we let p̄t denote a solution to the normalized Ricci flow, unless otherwise indicated.

The interesting feature of choosing h to be a metric of constant curvature is that the drift of the
SDE satisfied by pτ doesn’t depend on xτ (although the target always does, except in trivial cases).
In particular, we have the following three cases:

r = 1 : dpτ = e−pτ

[
2∑
i=1

ai
√

2 dW i
τ

]
+
(
e−2pτ − 1

)
dτ

r = 0 : dpτ = e−pτ

[
2∑
i=1

ai
√

2 dW i
τ

]

r = −1 : dpτ = e−pτ

[
2∑
i=1

ai
√

2 dW i
τ

]
+
(
1− e−2pτ

)
dτ

(21)

In general, the stochastic target problem for the normalized Ricci flow (and also the Ricci flow
itself) gives an equation of the form

(22) dpτ = e−pτ

[
2∑
i=1

aidW
i
τ

]
+ Uτ (pτ )dτ,

where the controls ai, i = 1, 2 are bounded and chosen such that pt is almost surely on M0, the
section corresponding to p̄0 in the bundle M × R. In the case at hand we assume that Uτ (p) is a
function U : [0, t]×R→ R which is uniformly locally Lipschitz in the second variable, i.e. for any
L > 0 there is a constant CL with |Uτ (p)− Uτ (q)| ≤ CL|p− q| for all τ ∈ [0, t] and p, q ∈ [−L,L].

The basic point is that there are natural barriers for pτ given in terms of equation (22) where the
martingale part is set to be equal to 0. To be precise, we define a barrier as a solution qτ to the ODE

(23) dqτ = Uτ (qτ )dτ.

In this framework we have a general result as follows.

Lemma 5. Assume that pτ and qτ are solutions to (22) and (23) respectively for τ ∈ [0, t] with U a
uniformly locally Lipschitz function in the second variable on [0, t]× R.
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If at any time τ1 ∈ [0, t), pτ1 < qτ1 with positive probability, then at any later time τ2 ∈ (τ1, t], pτ2 < qτ2
with positive probability.

Similarly, if at any time τ1 ∈ [0, t), pτ1 > qτ1 with positive probability, then at any later time τ2 ∈ (τ1, t],
pτ2 > qτ2 with positive probability.

Proof. The proof is a basic application of stopping time and Gronwall’s lemma. We will prove only
the first part, the second one being similar.

So, assume that qτ1 > pτ1 with positive probability, and therefore that we can choose a constant
L > 0 such that L ≥ qτ1 − pτ1 > 1/L with positive probability. We further take L large enough so
that |qτ | ≤ L for all τ ∈ [0, t].

Now, for any smooth function η : R→ R, we have
(24)

η(qτ−pτ ) = η(qτ1−pτ1)+Mτ+

∫ τ

τ1

(
e−2psη′′(qs − ps)(a2

1(s) + a2
2(s)) + η′(qs − ps)(Us(qs)− Us(ps))

)
ds

where Mτ is a martingale with M(τ1) = 0. Further, we choose the function η(ξ) such that it is
non-decreasing, equal to 0 for ξ ≤ 0, equal to 1 for ξ ≥ 2L and η(ξ) = ξ2 for small ξ ≥ 0.

Next, we define the stopping time σ = inf{u ≥ τ1 : pu ≥ qu}∧ t. With this setup, we will denote
for simplicity ητ = η(qτ − pτ ), η′τ = η′(qτ − pτ ) and η′′τ = η′′(qτ − pτ ). Furthermore, from (24),

E[ητ∧σ] = E[ητ1 ] +

∫ τ

0
E[1[τ1,σ](s)

(
e−2psη′′s (a2

1(s) + a2
2(s)) + η′s(Us(qs)− Us(ps))

)
]ds.

Since qs remains bounded on [τ1, τ2] and η′ has compact support, combined with the property
that Uτ is uniformly Lipschitz in the second variable on compact intervals, we can find a constant
C > 0, such that

η′s(Us(qs)− Us(ps)) ≥ −Cη′s(qs − ps).
This, the choice of our function η, the fact that the controls ai, i = 1, 2 are bounded, and that qs is
bounded, yield, in the first place, that e−2psη′′s is bounded, and also that for some constant C > 0,(

e−2psη′′s (a2
1(s) + a2

2(s)) + η′s(Us(qs)− Us(ps))
)
≥ −Cηs.

To check this, one can reason as follows. For qs ≤ ps, both sides are 0. For ε > qs − ps > 0 with
small ε, the first term is non-negative and the second one is bounded below by−C(qs−ps)2 which
is again a constant times ηs. For qs − ps > ε, the inequality follows easily as the left hand side is
bounded below by some negative constant and ηs is certainly bounded below by ε2.

Summing up the findings we get that

E[ητ∧σ] ≥ E[ητ1 ]− C
∫ τ

τ1

E[1[τ1,σ](s)ηs]ds

Since σ is the first time ps = qs, it follows that, 1[τ1,σ](s)ηs = ηs∧σ, consequently, for some C > 0,

E[ητ∧σ] ≥ E[ητ1 ]− C
∫ τ

τ1

E[ηs∧σ]ds for τ ∈ [τ1, τ2].

At this point an application of Gronwall’s inequality results in

E[ητ∧σ]eC(τ−τ1) ≥ E[ητ1 ] > 0,

where the hypothesis qτ1 > pτ1 with positive probability is translated into the last inequality. For
τ = τ2 we obtain E[ητ2∧σ] = E[ητ2 , σ > τ2] > 0 and therefore we conclude that {σ > τ2} has
positive probability; stated otherwise, the probability that qτ2 > pτ2 is positive.
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One technical word is in place here. Namely, the definition from (22) is in the sense of local
martingales, but during the proof we look at η(qτ − pτ ) and this is actually a true semi-martingale
not merely a local one. This is indeed due to the boundedness and continuity of the quantities
involved, namely e−psη′s, e−2psη′′s and the controls ai, i = 1, 2. �

Next, we solve equation (23) for each of the three cases described in equation (21) (this is
straight-forward, as the resulting ODEs are separable). For ease of reference, we will label the
resulting equations as BK

c (τ) with super- and sub-scripts indicating relevant parameters. In the
case r = 1, we have that

B1
c (τ) =

1

2
log
(
1− ce−2τ

)
for some constant c ∈ (−∞, 1).

The choice of c allows any initial condition. Note that c = 0 gives the constant solution B1
0(τ) ≡ 0.

For any c, as τ →∞, we see that B1
c (τ)→ 0. The case r = 0 gives

B0
c (τ) = c for some constant c ∈ R.

Obviously, the choice of c allows any initial condition. (This is perhaps a bit pedantic, but we
include it for the sake of completeness.) Finally, r = −1 gives

B−1
c (τ) =

1

2
log
(
1− ce2τ

)
for some constant c ∈ (−∞, 1).

Again, the choice of c allows any initial condition, and c = 0 gives the constant solution B−1
c (τ) ≡

0. This time, though, if c 6= 0, then the solution heads to ±∞ as τ increases (in finite time for
negative initial condition, and as τ →∞ for positive initial condition).

Continuing, we want to use the previous lemma and a judicious choice of the parameter c to
bound the reachable set at time t. Recall that p0 gives the initial metric g0 and serves as the target
in the target problem (and which as a section we write as Γ(0)). The the assumption that g0 and h
have the same area implies that maxx∈M p0(x) = α ≥ 0 and that minx∈M p0(x) = β ≤ 0. Further, if
either α or β is zero then both are, meaning that p0 ≡ 0 and g0 is just h.

The logic of the proof of the following theorem explains why solutions qτ of equation (23) are
called barriers, in this context.

Theorem 6. Consider the target problem (for the normalized Ricci flow) where h corresponds to one of the
three constant curvature cases as discussed above (and with α and β as just described). For any t ≥ 0, we
have that

sup
(x,p)∈V n(t)

p ≤


1
2 log

(
1− e−2t

(
1− e2α

))
if r = −1,

α if r = 0,
1
2 log

(
1− e2t

(
1− e2α

))
if r = 1,

and

inf
(x,p)∈V n(t)

p ≥


1
2 log

(
1− e−2t

(
1− e2β

))
if r = −1,

β if r = 0,
1
2 log

(
1− e2t

(
1− e2β

))
if r = 1 and t < −1

2 log
(
1− e2β

)
.

(If β = 0, we set −1
2 log

(
1− e2β

)
=∞.)

Proof. We start with the upper bound in the r = −1 case. We consider some fixed but arbitrary
t ≥ 0. Let c′ = e−2t

(
1− e2α

)
. Then

B−1
c′ (t) = α and B−1

c′ (0) =
1

2
log
(
1− e−2t

(
1− e2α

))
.
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Thus, by the previous lemma, if we start from a point (x0, p0) with p0 > B−1
c′ (0), we have that

pt > B−1
c′ (t) = α with positive probability (for any controls). By the definition of α, this means

that pt is not in the target with positive probability. Since this holds for any controls, it follows
that (x0, p0) is not in the reachable set at time t, which we recall we denote V n(t). This implies the
upper bound on sup(x,p)∈V n(t) p given in the theorem.

For the lower bound in the r = −1 case, consider c′ = e−2t
(
1− e2β

)
. Then

B−1
c′ (t) = β and B−1

c′ (0) =
1

2
log
(

1− e−2t
(

1− e2β
))

.

Analogously to the argument for the upper bound, the previous lemma implies that no point
(x0, p0) with p0 < B−1

c′ (0) can be in V n(t). This implies the desired lower bound.
For the r = 0 case, analogous arguments apply, using c′ = α for the upper bound and c′ = β for

the lower bound.
Finally, we consider the r = 1 case. The upper bound is proven just as in theK = −1 case, using

c′ = e2t
(
1− e2α

)
. The proof of the lower bound is similar, except that if t ≥ −1

2 log
(
1− e2β

)
, we

have that B1
c (t) > β for any choice of c ∈ (−∞, 1). Thus, these arguments do not produce any

lower bound for inf(x,p)∈V n(t) p in this case. On the other hand, if t < −1
2 log

(
1− e2β

)
, we can let

c′ = e2t
(
1− e2β

)
and argue just as before. �

In light of the verification theorem, these conclusions can be restated in terms of pt. Namely,
we can replace sup(x,p)∈V n(t) p in the above theorem with maxx∈M pt(x) and inf(x,p)∈V n(t) p with
minx∈M pt(x). Nonetheless, there is a reason to state the theorem as above. Suppose we consider
the same target problem (or problems, since there are three cases), except that now we allow
the target to be any (non-empty) closed set Γ such that maxΓ p = α ≥ 0 and maxΓ p = β ≤ 0,
rather than just a smooth section corresponding a metric g0 on M . Then we can still ask about
the reachable set at time t ≥ 0. Assuming that it is non-empty, the bounds in the above theorem
still hold (with the same proofs). This shows that these bounds don’t depend on the verification
theorem and the resulting connection with PDEs, or on the structure of the reachable set, such as
its smoothness or whether it’s a section. (Moreover, similar methods could be employed even if α
and β weren’t assumed to be non-negative and non-positive, respectively.) It is this sense in which
we refer to them as “a priori bounds.” Of course, it is likely that these bounds are only interesting
in light of their connection to the Ricci flow, as given by the verification theorem.

We close this section with some easy observations about this theorem. First of all, if α = 0,
then sup(x,p)∈V n(t) p = 0 for all t ≥ 0, and this holds in all three cases. Similarly, if β = 0, then
inf(x,p)∈V n(t) p = 0 for all t ≥ 0, in all three cases. Since one of α or β being zero implies that both
are, we conclude that if either α or β is zero, the reachable set only contains points with p = 0. On
the other hand, every point with p = 0 will clearly be in the reachable set (just let the controls be
identically zero). Thus we will have V n(t) = {p ≡ 0} for all t ≥ 0. This corresponds to the basic
fact that if g0 is already a metric of constant curvature, then it is stationary under the normalized
Ricci flow.

In the case when α and β are not zero, we see much different behavior for the cases of the three
different curvatures. For r = −1, the bounds improve as t increases, which we will see makes this
the easiest case to deal with. For r = 0, the bounds are constant. Finally, for r = 1, the bounds get
worse as t increases, and the lower bound even ceases to exist in finite time. This corresponds to
the well-known observation that the case of the sphere (or projective space) is the hardest case to
handle for Ricci flow on compact surfaces.
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Remark. It’s worth point out that the above argument from Theorem 6 is overkill in the r = 0 case, since
then the lemma follows directly from the fact that pτ is a martingale and martingales have constant expec-
tation.

We finish this discussion with the following useful Corollary which plays an important role
later on.

Corollary 7. For the case of r = −1, or equivalently, the case χ(M) < 0, the solution p̄t of the normalized
Ricci flow converges to 0 uniformly in the C0-norm exponentially fast as t→∞.

The same arguments work in the case of unnormalized Ricci flow. We record this here as fol-
lows.

Theorem 8. For the unnormalized Ricci flow, as long as the stochastic target is well defined up to time t,

sup
(x,p)∈V n(t)

p ≤

{
1
2 log

(
e2α + t

)
if r = −1,

1
2 log

(
e2α − t

)
if r = 1, and t < e2α.

and

inf
(x,p)∈V n(t)

p ≥

{
1
2 log

(
e2β + t

)
if r = −1,

1
2 log

(
e2β − t

)
if r = 1, and t < e2β.

The only thing we should point out here is that there is a blow-up in finite time for the case of
r = 1 and there is also a blow up in finite or infinite time for the case of r = −1. This recovers the
blow-up results in the previous section, only this time we used uniformization.
Remark. This theorem shows that for the unnormalized Ricci flow, in the negative curvature case, the flow
does not blow up in finite time, at least in the C0 topology. This is already a good indication that the
solution is defined for all times and corroborated with the above Theorem shows that the flow blows up at
infinite. Thus, this result is probably a better result (in the case of negative constant curvature case) as the
one obtained in Section 4.

6. MIRROR COUPLING

For the remainder of the paper, we assume that we have a smooth initial metric and a smooth
solution to the normalized Ricci flow for all time (which we do since the initial conditions are
smooth on a compact surface). We are interested in studying the convergence to the constant
curvature limit according to the stochastic framework we have been developing.

We consider the cases of zero Euler characteristic and of negative Euler characteristic, and we
work relative to the underlying metric of constant curvature, as in the previous section. The pos-
itive Euler characteristic case (the sphere or projective plane) is well-known to be more difficult.
This is largely due to the fact that there are many constant curvature metrics in any given confor-
mal class, so that it’s not clear in advance which one will be the limiting metric under normalized
Ricci flow (this is related to the issue of solitons). As a result, we don’t pursue this case.

We are assuming that we have a smooth solution to the normalized Ricci flow for all time.
This means that the reachable set is always a smooth hypersurface transverse to the vertical
fibers. From now on, we’re only interested in the successfully controlled process, so for notational
simplicity we will let (xτ , pτ ) always denote that process (that is, what we previously denoted
Ŷτ = Yτ (Â)). Moreover, if p̄ is the smooth solution, we see that pτ = p̄t−τ (xτ ). One consequence
of this is that we can generally restrict our attention to the xτ process. In particular, if we wish
to couple two copies of the successfully controlled process (so that they meet as quickly as pos-
sible), it is enough to couple the xτ marginals, since if the processes meet on the manifold, then
they also meet on the fiber. In this sense, what we are doing is equivalent to just considering
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Brownian motion on the underlying time-varying manifold, and so we see again that running a
Brownian motion along the solution flow (and employing the stochastic techniques that apply in
that situation) is subsumed by the more general construction of the stochastic target problem.

A significant part of our results on the long-time convergence of the normalized Ricci flow is
based on coupling two copies of the marginal process onM , which we denote by xτ and yτ . Recall
that xτ will be time-changed Brownian motion on (M,h), with the time change given by integrat-
ing a = 2e−2p̄ along the paths, and analogously for yτ , where we let b denote the instantaneous
time-dilation (this is one significant advantage to working relative to this fixed metric). Note that
we’ve incorporated the

√
2 normalization factor into the time-change, so that we really do have

Brownian motion with respect to h as the underlying object. This makes the stochastic analysis
look a bit more standard.

We wish to implement the mirror coupling for xτ and yτ , where the mirror map is with respect
to the fixed h metric. Viewed in this way, this is a fairly straight-forward variant of the mirror
coupling for two Brownian motions on a smooth (non-varying) Riemannian manifold. We sim-
ply generalize to allow our processes to be Brownian motions up to a random but smooth (in
terms of the particle’s position in space-time) time-change. References for the standard (non-time
changed) construction are [15] and [11], and we proceed by modifying this as necessary and by
not belaboring the aspects which carry over without modification.

Note that, since we’re working only in the cases of non-positive Euler characteristic, a (and thus
also b) is bounded above and below by positive constants (depending only on the initial metric)
for all time, by the results of the previous section.

First, let CM be the subset of M ×M consisting of points (x, y) such that y ∈ Cut(x) (which is
equivalent to x ∈ Cut(y)), and let DM be the diagonal subset of M ×M . Then let EM be M ×M
minus CM and DM . Note that the distance function dist(x, y) is smooth on EM , and that the
direction of the (unique) minimal geodesic from x to y is smooth on EM . Let (x, y) ∈ EM ; then
the mirror map is the isometry from TxM to TyM given by reflection along the minimal geodesic
connecting x and y. We see that the mirror map is smooth (on EM , which is where it is defined).
As result, there is no problem in running the mirror coupling as long as the joint process is in EM .
That is, for one-dimensional independent Brownian motions W 1

τ and W 2
τ , consider the system of

SDEs

dxτ = aτ

[
2∑
i=1

ei(xτ ) ◦ dW i
τ

]

dyτ = bτ

[
2∑
i=1

Ψτ [ei(yτ )] ◦ dW i
τ

]
,

where Ψτ = Ψ(xτ , yτ ) = mxτ ,yτ e(xτ )e(yτ )−1 with mx,y being the mirror map, namely parallel
transport followed by reflection with respect to the perpendicular to the geodesic from x to y.
Then the coefficients are smooth in both space and time, so the system admits a unique strong
solution, up until the first time the process leaves EM .

The point of the coupling is to get the particles to meet, so we turn our attention to this issue
next. First note that the marginals xτ and yτ are time-changed Brownian motions as desired,
so we’re coupling the right processes. The natural object of study is the distance between the
particles, with respect to the fixed metric h. We denote this distance by ρτ . It is a (continuous,
non-negative) semi-martingale, so we derive the SDE that it satisfies by Ito’s formula. This is the
standard computation with the factors of a and b included, so we’ll be brief. For more on this, see
[15, Section 6.5].
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The martingale part is easily seen to be (a + b) dŴτ for some Brownian motion Ŵτ , whether
we’re in the r = 0 or r = −1 case. (In what follows, we use Ŵτ to denote some Brownian motion,
which may change from appearance to appearance, in order to more conveniently describe the
SDE satisfied by a given process.) As for the drift, the only contribution comes from the second
derivative of the distance with respect to the diffusions perpendicular to the geodesic from x to y,
which is computed in terms of the index of the appropriate Jacobi field along the geodesic from x
to y. We now summarize the computation.

Let γ be the unique minimal geodesic from x to y (parametrized by arclength), and let v be a
unit vector field along γ, perpendicular to γ (this determines v uniquely up to sign, and either of
choice of sign is fine). Then we want the Jacobi field J(s)v(γ(s)) where J : [0, ρ]→ R satisfies

J̈ + rJ = 0, J(0) = a, J(ρ) = b.

When r ≡ 0, the solution space to this differential equation is spanned by 1 and s. Taking the
boundary conditions into account, we see that the solution is

J(s) = a+
b− a
ρ

s.

Similarly, when r ≡ −1, the solution space is spanned by cosh s and sinh s, and the boundary
conditions give

J(s) = a cosh s+
b− a cosh ρ

sinh ρ
sinh s.

The index of each of these Jacobi fields is given by∫
γ

((
J̇
)2
− rJ2

)
ds = J(ρ)J̇(ρ)− J(0)J̇(0),

where the right-hand side is obtained from the left via integration by parts and the differential
equation satisfied by J . Thus for r ≡ 0, the index is

b

(
b− a
ρ

)
− a

(
b− a
ρ

)
=

(a− b)2

ρ
,

and for r ≡ −1, the index is

b

[
a sinh ρ+ (b− a cosh ρ)

cosh ρ

sinh ρ

]
− a

[
b− a cosh ρ

sinh ρ

]
=
(
a2 + b2

)
coth ρ− 2ab

1

sinh ρ

= (a− b)2 coth ρ+ 2ab tanh
ρ

2
.

Putting this together, we see that

dρτ =

 (a+ b) dŴτ + 1
2

[
(a−b)2
ρ

]
dτ for r = 0,

(a+ b) dŴτ + 1
2

[
(a− b)2 coth ρ+ 2ab tanh ρ

2

]
dτ for r = −1.

As mentioned, this holds until the first exit time from EM . Following the reasoning in [15, Section
6.6], one can show that Ŵτ = −

∑2
i=1〈ei(xτ ), γ̇τ (0)〉dW i

τ where γτ is the minimal geodesic joining
xτ and yτ starting at xτ and running at unit speed. We will come back to these expression in
Section 9.

When the particles meet, we’ve achieved our goal, and we can either stop the process, or allow
it to continue to run as xτ = yτ . Either way, there’s no problem caused by the process hitting the
diagonal. On the other hand, we do need to find a way to continue the process past the first hitting
time of the cut locus. Showing that this is possible constitutes the proof of the following theorem.
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Theorem 9. Let M = (M,h) be a compact surface of constant curvature 0 or −1, and let a = a(x, τ) and
b = b(y, τ) be as above. Then there exists a process (xτ , yτ ) on M ×M , started from any (x0, y0) 6∈ D and
run until the first time hitting time of D, such that

(1) The marginals xτ and yτ are time-changed Brownian motions, with times changes given by a and
b, respectively.

(2) The distance (relative to h) between xτ and yτ , denoted ρτ , satisfies the SDE

(25) dρτ =

 (a+ b) dŴτ + 1
2

[
(a−b)2
ρ

]
dτ − Lτ for r ≡ 0,

(a+ b) dŴτ + 1
2

[
(a− b)2 coth ρ+ 2ab tanh ρ

2

]
dτ − Lτ for r ≡ −1,

where Lτ is a non-decreasing process which increases only when (xτ , yτ ) ∈ CM (and the set of τ
for which (xτ , yτ ) ∈ CM has measure zero almost surely).

Proof. As mentioned, the only issue is extending the construction mentioned above past the first
hitting time of CM . As usual, we proceed by approximation.

Choose small, positive δ. Until the process comes within distance δ of CM (in the product
metric on M ×M ), we run the mirror coupling as above. When the process hits distance δ from
CM , at time τ1, we start to run xτ and yτ as independent (time-changed) Brownian motions. This
continues until the process is distance 2δ from CM , at time τ2, when we again run them under
the mirror coupling. We continue this procedure, so that we have a joint process (xδτ , y

δ
τ ) which

evolves under the mirror coupling on intervals of time [τ δ2n, τ
δ
2n+1) and as independent processes

on intervals of time [τ δ2n−1, τ
δ
2n), for non-negative integers n, where the τm are the alternating

hitting times of the δ and 2δ level sets of the distance from CM .
It’s clear that xδτ and yδτ are time-changed Brownian motions as desired, and that the ρδτ satisfies

the desired SDE when (yδ − xδ)τ is distance more than 2δ from CM . It’s also clear that when xδτ
and yδτ are being run independently, ρδ satisfies an SDE of the form

dρδτ = u dŴτ + v dτ − L̂τ ,

where u and v are bounded (with bound depending only on M and the bounds on a and b) and
L̂τ is a non-decreasing process which increases only when (xδτ , y

δ
τ ) ∈ CM (again, see the references

mentioned above).
Suppose we show that, for any t > 0, the expected amount of time on the interval [0, t] that the

process spends within distance 2δ ofCM goes to zero with δ. (Thus the amount of time the particles
spend being run independently goes to zero almost surely.) Then letting δ go to zero, we know
there is at least one subsequence along which the process (xδτ , y

δ
τ ) converges to a limiting process

(xτ , yτ ) (by compactness). That this limiting process satisfies the first property in the theorem is
immediate, since xδτ and yδτ do for all δ > 0. For the second property, note that the contributions
from the u dW̃τ term and the v dτ term go to zero by the boundedness of u and v and the fact that
the expected length of time over which these terms are integrated goes to zero. It follows that the
martingale part and the “regular” part of the drift come entirely from the SDE for ρ induced by
the (mirror) coupling, and that the time spent at CM has measure zero. Finally, the L̂τ contribution
converges to a term Lτ as indicated.

Thus, to complete the proof, we need only show that the expected amount of time on the inter-
val [0, t] that the process (yδ, xδ)τ spends within distance 2δ of the CM goes to zero with δ. This
is the most tedious part, so we will try not to belabor it. Also, to simplify matters, we will take
advantage of the structure of M . In the r = 0 case, we can think of M as R2 modulo some lattice,
or equivalently, as a solid parallelogram with opposite sides identified. Then for fixed x, the cut
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locus is just the identified sides of the parallelogram (centered at x), which means that it is just
two intersecting closed geodesics. This implies that CM consists of two intersecting smooth (com-
pact) hypersurfaces in M ×M . The advantage here is that we can understand the time spent near
CM in terms of the time spent near each of these two hypersurfaces surfaces individually. This is
nice because, in some (possibly local) tubular neighborhood of such a hypersurface, the (signed)
distance to the hypersurface is smooth.

The r = −1 case is analogous. Here M is the hyperbolic plane modulo an appropriate group
action, or equivalently, a polygon in the hyperbolic plane with sides identified. So for fixed x, the
cut locus is the union of a finite number of intersecting closed geodesics, and CM consists of a
finite number of intersecting smooth (compact) hypersurfaces in M ×M .

In either case, it’s clearly enough to consider one smooth hypersurface component ofCM , which
we denote Σ, and prove that the time spent within distance 2δ goes to zero. We fix some δ0 > 0
such that the signed distance from Σ, which we denote ξ, is smooth on a neighborhood of the
closure of the δ0-neighborhood of Σ. (We will later also assume that δ0 is small enough to satisfy
one other condition.) Now the SDE satisfied by ξτ = ξδτ , for |ξ| < δ0, depends on whether the joint
process is being run under independence or under the mirror coupling (of course, ξτ depends on
δ, but we’ll suppress this for ease of notation).

Under independence, the bounded geometry and non-positive curvature of M implies that ξτ
satisfies an SDE of the form

dξτ = u dŴτ + v dτ for |ξ| < δ0,

where u and |v| are bounded and u is bounded from below by a positive constant (with all of these
bounds depending only on M , δ0, and the bounds on a and b). Under the mirror coupling, ξτ
satisfies an SDE of the form

dξτ = ũ dŴτ + ṽ dτ for 0 < |ξ| < δ0.

(Note that the process never runs under the mirror coupling when ξ = 0.) Here, the bounded
geometry and non-positive curvature of M again implies that ũ and |ṽ| are bounded with bounds
depending only on M , δ0, and the bounds on a and b. We further claim that ũ is also bounded
from below by a positive constant depending only on M , δ0, and the bounds on a and b. This is
the key fact, and it uses the particular structure of the coupling. We now establish this claim.

It’s easiest to visualize what’s happening by looking at a horizontal slice of M ×M . The instan-
taneous picture is given by Figure 1, which illustrates the mirror map for Brownian differentials
obtained from (dW 1

τ , dW
2
τ ) by reflection and the minimal geodesics from y to x and the slice of Σ

(which we denote Σ0 and which is a piece of Cutx), from which the gradient of ξ and its interaction
with the generator of the process are determined. Let λ be the distance from y to Σ0. By symmetry
under interchanging x and y, the symmetry of being in the cut locus of a point, and the product
structure on M ×M , we see that ξ = ±λ/

√
2, with the sign coming form the fact that ξ is a signed

distance.
Since the martingale part of dξτ depends only on the first order structure at a point, we see

that we can consider the horizontal and vertical components separately (and that the martingale
part is the same, infinitesimally, for both the K ≡ 0 and the K ≡ −1 cases). If we let ϕ be the
angle between the minimal geodesic from x to y and the minimal geodesic from y to Σ0, then the
martingale part of λ relative to the evolution of yτ (with x temporarily fixed) is −b cosϕdW 1

τ −
b sinϕdW 2

τ . As we see from symmetry, the martingale part of λ relative to the evolution of xτ is
−a cosϕdW 1

τ + a sinϕdW 2
τ . Combing these, we see that the martingale part of dξt is

± 1√
2

[
−(a+ b) cosϕdW 1

τ + (a− b) sinϕdW 2
τ

]
,
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FIGURE 1. The configuration of the joint process relative to the cut locus.

and thus, using that W 1
τ and W 2

τ are independent, we have

ũ =

√
(a+ b)2 cos2 ϕ+ (a− b)2 sin2 ϕ

for an appropriate choice of Ŵ in the SDE satisfied by ξτ .
Next, we need to show that ϕ is bounded away from π/2 (on the set {0 < |ξ| < δ0}), with the

bound only depending on M and δ0. To do this, consider the behavior of ϕ as we let yτ approach
a point in Σ0. In the limit, the geodesic from xτ to yτ cannot be tangent to Σ0, since for surfaces of
non-positive curvature the geodesics from x are transverse to Cutx. Thus, the corresponding limit
of ϕ is strictly less than π/2. By compactness (and continuity of ϕ), all such limiting values of ϕ
are bounded away from π/2, with bound depending only on the geometry of M . Now ϕ varies
continuously as yτ approaches any point in Σ0, so again by compactness, ϕ will be bounded away
from π/2 on any sufficiently small neighborhood of Σ0. Thus, by assuming that δ0 is small enough
(this is the other condition on δ0 mentioned above), we see that ϕ is bounded away from π/2 (on
the set {0 < |ξ| < δ0}), with the bound only depending on M and δ0. Continuing, since a and b
are bounded below by a positive constant, the claim that ũ is bounded from below follows.

Thus the SDE satisfied by ξτ switches between these two possibilities at the stopping times τ δi .
Using the bounds on the coefficients of the SDEs just given, it is a standard exercise in stochastic
analysis to show that the time, over τ ∈ [0, t], that ξτ spends in the interval [−2δ, 2δ] goes to zero
with δ almost surely, and we omit the details. As noted, this completes the proof. �

7. CONVERGENCE OF FIRST ORDER TO CONSTANT CURVATURE IN THE CASE χ(M) = 0

Now that we have our uniqueness/verification theorem and the general coupling procedure,
we begin exploring some of the consequences. As usual, for simplicity, we assume that we have
a smooth solution pt for all time t ≥ 0 on the manifold M . We take here a flat metric h, which is
possible under the assumption that χ(M) = 0.
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The main result of this section is the following.

Theorem 10. For M , h, and p0 as above, suppose that we have a smooth solution pt to Equation (9) for all
t ∈ [0,∞). Then there exist constants, c, C > 0 which depend only on the metrics g0 and h such that

(26) sup
x∈M
|p̄t(x)| ≤ ce−Ct.

Proof. Fix a time t > 0, a time s ∈ [0, t) and a point x ∈ M so that the Ricci flow has a solution on
[0, t]. The first thing to notice is that pτ = p̄t−τ (xτ ) is a martingale. Thus we have the following
stochastic representation

(27) pt(x) = E
[
pt−σ(xσ)

]
valid for any stopping time σ with 0 ≤ σ ≤ t. In particular, setting σ = t shows that pt(x) is a
weighted average of the values of p0. Thus

(28) min
M

p0 ≤ min
M

pt ≤ max
M

pt ≤ max
M

p0

for any t. The main idea for getting (26) is to prove that for some c, C > 0,

(29) osc p̄t ≤ ce−Ct.
Indeed, if this is true, then combining this with the fact that the integral of e2p̄t with respect to the
volume induced by h is 1, we deduce that there is at least one point x̃ for which p̄t(x̃) = 0 and
from here it is clear that we get (26).

We now choose any two starting points x and y for the processes xτ and yτ . Over each of these
points, there’s exactly one point (p1(x) and p1(y)) in the fiber which is in the reachable set Γt. We
wish to run the controlled process starting from both (x, pt(x)) and (y, pt(y)), and couple them so
that they meet as quickly as possible. Our reachable sets have the semigroup property, i.e. the
process (xτ , pτ ) at time τ ∈ [0, t] is on Γt−τ , and since we know that we have a solution until time
t, we know that after running the controlled processes for time τ ≤ t they will be on the solution
section corresponding to the Ricci flow at time t− τ . This means that if the particles couple on M ,
they couple in the total space as well, that is, xτ = yτ implies that pt−τ (xτ ) = pt−τ (yτ ) as well.

In light of this, if σ is the coupling time of xσ and yσ, the martingale property gives that

p̄t(x)− p̄t(y) = E[p̄t−σ∧s(xσ∧s)]− E[p̄t−σ∧s(yσ∧s)]

= E[p̄t−σ(xσ)− p̄t−σ(yσ), σ ≤ s] + E[p̄t−s(xs)− p̄t−s(ys), s < σ]

= E[p̄t−s(xs)− p̄t−s(ys), s < σ].

(30)

The outcome of this is that

(31) osc p̄t ≤ P(s < σ) osc p̄t−s.

What remains to be controlled here is P(s < σ). While the above is true for any coupling of xτ
and yτ , we wish to use the mirror coupling, as was introduced in the previous section. The main
property of this coupling, for us, is contained in (25) which gives the equation satisfied by the
distance function ρτ = d(xτ , yτ ), namely

(32) dρτ = (a+ b) dŴτ +
1

2ρτ
(a− b)2 dτ − Lτ

with aτ = e−p̄t−τ (xτ ), bτ = e−p̄t−τ (yτ ) and Ŵ being a one dimensional Brownian motion on the time
interval [0, t]. Obviously the time τ runs up to σ (the hitting time of 0) or t, whichever comes first
and the term Lτ is non-negative. We are interested in estimating the probability this hitting time
σ occurs after time s. To this end, the first thing which will be used here is the fact that from (28)
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we know that a and b are all bounded from above as well from below. So we have two constants
A,B > 0 which are depending only on p0, or otherwise the starting metric g0, with the property
that

(33) A ≤ a, b ≤ B.

To move on, we let

λ(u) =

∫ u

0

1

(av + bv)2
dv

be the time-change making the martingale part of ρτ from (32) into a Brownian motion. Then with
the notation ρ̃u = ρλ(u),

(34) dρ̃u = dW̃u +
1

2ρ̃u

(a− b)2

(a+ b)2
du− dL̃u

where a and b are evaluated at time λ(u) and the above equation is valid for u ∈ [0, t ∧ λ−1(t)),
where λ−1(t) is the first value of u corresponding to λ(u) = t. Obviously cu ≤ λ(u) ≤ Cu for some
constants c, C > 0 and also because of (33),∣∣∣∣a− ba+ b

∣∣∣∣ ≤ B −A
B +A

= 1− δ < 1.

Ignoring theL term in (34) and then using standard comparison for ordinary stochastic differential
equations, we learn that the process ρ̃ is bounded above by a Bessel process of index δ < 2 and
starting at some value ρ0 bounded by the diameter (with respect to the metric h) of the manifold
M . Thus, invoking [13, Equation (15)] which gives the distribution of the hitting time σ̃ of 0 for a
Bessel process of index δ < 2 starting at ρ̃, we obtain

P(s < σ̃) =
1

Γ(1− δ/2)

∫ ρ̃0/(2s)

0
y−δ/2e−ydy.

Finally, since cu ≤ λ(u) ≤ Cu and the diameter of the manifold M is finite, we arrive at

P(s < σ) ≤ 1

Γ(1− δ/2)

∫ D/s

0
y−δ/2e−ydy =: Λ(s)

where D is a constant which depends only on the initial metric g0 and some geometry of the
underlying metric h (more precisely the diameter of M with respect to h). Hence it turns out that
the function Λ is determined by the metrics h and g0.

To summarize, from (31) and the preceding we now have that

osc p̄t ≤ Λ(s) osc p̄t−s.

Using this, it is easy to get (29) as follows. For t ∈ [0, 1], we know from (28), that osc p̄t ≤ osc p0.
Now for each t ∈ [n, n+ 1], n ≥ 1, using repeatedly the above inequality, we arrive at

osc p̄t ≤ Λ(1)n osc p̄t−n ≤ Λ(1)t osc p0/Λ(1)

which is exactly the exponential decay of (29) since 0 < Λ(1) < 1. �

Remark. It is interesting to point out that we can prove the same exponential decay as in Theorem 10 for
the case of χ(M) < 0 using the coupling argument. This decay is, however, already taken care of by the
a priori estimates of Corollary 7. Nonetheless, this coupling argument is the one we will employ for the
gradient estimates in the following section.
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8. ESTIMATES ON THE GRADIENT DECAY OF THE NORMALIZED RICCI FLOW IN THE CASE
χ(M) ≤ 0

We continue under the same assumptions that M is a compact surface with reference metric
h of constant curvature 0 or −1 (so M has non-positive Euler characteristic by the Gauss-Bonnet
theorem) and g0 is a smooth initial metric in the same conformal class and with the same area as
h, so that the normalized Ricci flow has a smooth solution for all time which is given by p̄t. Now,
p̄t converges in the C0-norm exponentially fast to 0 as shown in Corollary 7 for the case χ(M) < 0
and Theorem 10 for the case χ(M) = 0. So we have that for some constants c, C > 0,

(35) sup
x∈M
|p̄t(x)| ≤ ce−Ct.

Let
Gt = sup

x∈M
|∇p̄t(x)|

The idea is to start with

〈∇p̄t(x), ξ〉 = lim
h→0

p̄t(γh(x))− p̄t(x)

h
where ξ is a unit vector in the tangent space at x and γt(x) is any curve started at x with initial
speed ξ. Then we use the coupling to estimate p̄t(x)− p̄t(y) for x and y close to one another. Due
to the non-linearity of the flow, the estimates coming from the above will still contain the gradient
bounds, but in the end, letting x and y come close to one another leads to a functional inequality
on Gt, from which we are able to derive the desired estimate.

Theorem 11. If χ(M) ≤ 0 then Gt goes to 0 exponentially fast. As a consequence, p̄t converges to 0
exponentially fast in C1.

Proof. Pick two sufficiently close points x, y ∈ M and some t > 0, and let ρτ = d(xτ , yτ ) for
0 ≤ τ ≤ t be the distance (measured with respect to the time independent metric h) between the
processes xτ and yτ started at x, and y respectively. We are going to use mirror coupling for the
processes x· and y·. Recall that the equations coupling equations satisfied by (xτ , pτ ) and (yτ , qτ )
are given by

dxτ = e−pτ

[
2∑
i=1

ei(xτ )
√

2 ◦ dW i
τ

]

dyτ = e−qτ

[
2∑
i=1

ei(yτ )
√

2 ◦ dW̃ i
τ

]

dpτ = e−pτ

[
2∑
i=1

ai
√

2 dW i
τ

]
+ r(e−2pτ − 1) dτ

dqτ = e−qτ

[
2∑
i=1

a′i
√

2 dW̃ i
τ

]
+ r(e−2qτ − 1) dτ,

(36)

where r = 0 or −1 and W̃ is the Brownian motion given by the mirror coupling.
We consider σ, the coupling time of x· and y·. From the fact that pτ + r

∫ τ
0 (1 − e−2pu)du is a

martingale and pτ = p̄t−τ (xτ ), we write,

(37) p̄t(x)− p̄t(y) = E[pt∧τ − qt∧τ ]− rE
[∫ t∧τ

0
(e−2pu − e−2qu)du

]
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for any stopping time τ . The useful estimates we are interested in are estimates from above of
p̄t(x) − p̄t(y), and this is good if we assume that p̄t(x) − p̄t(y) > 0. This is always possible unless
p̄t is constant in which case the gradient is 0, so there is nothing to prove then. Thus, assume that
p̄t(x) − p̄t(y) > 0 for some points x and y (which is the same as p0 > q0) and take α to be the first
time u for which pu = qu. With this choice of the stopping time, for any u ∈ [0, α] we know that
pu ≥ qu, which thus means e−2pu − e−2qu ≤ 0. This combined with the crucial fact that r ≤ 0 and
the exponential decay of p̄t, implies that for any s ∈ [0, t],

p̄t(x)− p̄t(y) ≤ E[pα − qα, α ≤ s] + E[ps − qs, s < α] ≤ ce−C(t−s)P(s < α).

The point is that if σ is the first coupling time, of the processes x· and y·, it is obvious that α ≤ σ
and thus

P(s < α) ≤ P(s < σ) for any s ∈ [0, t].

which in turn yields

(38) p̄t(x)− p̄t(y) ≤ ce−C(t−s)P(s < σ) for any s ∈ [0, t].

With this equation our next task becomes the estimate of P(s < σ).
From Theorem 9 we learn that the distance process ρτ satisfies

(39) dρτ ≤ (e−pτ + e−qτ )dBt +
(e−pτ − e−qτ )2

2ρτ
dτ

in the case r = 0 and

(40) dρτ ≤ (e−pτ + e−qτ )dBτ +
1

2

[(
e−pτ − e−qτ

)2
coth ρτ + 2e−pτ−qτ tanh

ρτ
2

]
dτ

in the case r = −1. Here Bt is a one dimensional Brownian motion run in the time interval [0, t].
So far, we have used this strategy of coupling in the proof of Theorem 10, in which, due to the

singularity in the drift of the equations (39) and (40), we compared the distance function ρτ with
a Bessel process. For the gradient estimates, we are going to remove the singularity based on the
observation that

pτ = p̄t−τ (xτ ) and similarly qτ = p̄t−τ (yτ ).

The upshot of this is that the term e−pτ − e−qτ is in fact of order ρτ . More precisely, due to the
boundedness of p̄,

|e−pτ − e−qτ | = |e−p̄t−τ (xτ ) − e−p̄t−τ (yτ )| ≤ Cd(xτ , yτ ) sup
x∈M
|∇p̄t−τ (x)| = CGt−τρτ .

Since ρτ ≤ D, whereD is the diameter of M , it is straightforward to show that either of (39) and
(40) implies

dρτ ≤ (e−pτ + e−qτ )dBτ + C(1 +G2
t−τ )ρτdτ.

To go further from here, consider ρ̃τ the solution to

dρ̃τ = (e−pτ + e−qτ )dBτ + C(1 +G2
t−τ )ρ̃τdτ.

with the same initial condition ρ0 = d(x, y) as ρτ . Standard arguments (in fact a simple application
of Gronwall’s Lemma) give that

ρτ ≤ ρ̃τ
which results in the fact that the first hitting time of 0 for ρ is less then or equal to the first hitting
time of 0 for ρ̃. Now if σ̃ denotes the hitting time of 0 for the process ρ̃t

(41) P(s < σ) ≤ P(s < σ̃) for all s ∈ [0, t].
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Therefore the task now is to estimate the latter, and to do this we solve for ρ̃ as

ρ̃τ =

(
ρ0 +

∫ τ

0
(e−pv + e−qv)e−

∫ v
0 f(z)dzdBv

)
e
∫ τ
0 f(z)dz

with the notation f(τ) = C(1+G2
t−τ ), for 0 ≤ τ ≤ t. Consequently the first hitting time of 0 for ρ̃ is

the first hitting time of −ρ0 for the time-changed Brownian motion
∫ τ

0 (e−pv + e−qv)e−
∫ v
0 f(z)dzdBv.

In law, this is the same as the first hitting time of −ρ0 of Bc(τ), with the time change

c(τ) =

∫ τ

0
(e−pv + e−qv)2e−2

∫ v
0 f(z)dzdv.

Once again using the boundedness of p̄, we can find a constant C > 0 such that

c(τ) ≥ c′(τ) := C

∫ τ

0
e−2

∫ v
0 f(z)dzdv for τ ∈ [0, t]

Now, if σ−ρ0 is the first hitting time of −ρ0 for the Brownian motion, then the hitting time of
−ρ0 for Bc(τ) is given by c−1(σ−ρ0 ∧ c(t)). This combined with (41) yields that

(42) P(s < t ∧ σ̃) = P(s < c−1(σ−ρ0 ∧ c(t))) ≤ P(c(s) ≤ σ−ρ0) ≤ P(c′(s) < σ−ρ0).

The distribution of σ−ρ0 is actually well understood (see for instance the Remark after Propo-
sition 3.7 in [21]), and its density is given by ρ0√

2πx3
e−ρ

2
0/(2x) on the positive axis, which results

in

P(c′(s) < σ−ρ0) =

∫ ∞
c′(s)

ρ0√
2πx3

e−ρ
2
0/(2x)dx =

2√
2π

∫ ρ0√
c′(s)

0
e−τ

2/2dτ.

Going back to (38) and using the preceding, we conclude that for s ∈ [0, t],

p̄t(x)− p̄t(y) ≤ ce−C(t−s)
∫ ρ0√

c′(s)

0
e−τ

2/2dτ,

from which, using the fact that d(x, y) = ρ0 and letting ρ0 go to 0, we fairly easily deduce that

Gt ≤ c
e−C(t−s)√

c′(s)
,

which we rearrange as

At

∫ s

0
e−

∫ τ
0 At−ududτ ≤ ce−Ct for all s ∈ [0, t] with Aτ = CtG2

τ .

From here the exponential decay of At is taken care of by the following Lemma. �

Lemma 12. Suppose At is non-negative, depends continuously on t for t ≥ 0 and has the property that for
some constants c, C > 0,

(43) At

∫ s

0
e−

∫ τ
0 At−ududτ ≤ ce−C(t−s) for all s ∈ [0, t].

Then there are constants k,K > 0 such that

At ≤ Ke−kt for all t > 0.
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Proof. For each n ≥ 1, let mn = supt∈[n,n+1]At and Mn = supt∈[n−1,n+1]At. Notice that the expo-
nential decay we are looking for is actually equivalent to mn ≤ Ke−kn for large enough n.

Now, for t ∈ [n, n+ 1] and s ∈ [0, 1], we have t− s ∈ [n− 1, n+ 1] and therefore −At−u ≥ −Mn,
which combined with (43) yields, for t near the supremum of At on [n, n + 1], and eventually
another constant c > 0

mn

∫ 1

0
e−τMndτ = mn

1− e−Mn

Mn
≤ e−cn for all large n.

which in turn gives

(**) mn ≤
Mn

1− e−Mn
e−cn.

Now, for each particular n, we have one of the following two alternatives:
(1) Mn ≤ e−cn/2, in which case it is clear that

(#) mn ≤ e−cn/2.

(2) Mn > e−cn/2, and in this case 1 − e−Mn > 1 − e−e−cn/2 > 1
2e
−nc/2 for large enough n, say

n ≥ n0. From (**), it follows that mn ≤ 2Mne
−cn/2 ≤ Mne

−c/2 for all n large enough, say
n ≥ n1. This inequality implies that

(##) mn ≤ mn−1e
−c/2 for all n ≥ n1.

Indeed if the supremum of At on the interval [n− 1, n+ 1] is the same as the supremum on
[n, n + 1], then Mn = mn and this in turn implies Mn = 0, in particular we trivially have
(##). If the supremum of At on [n − 1, n + 1] is the same as the supremum on [n − 1, n],
this gives Mn = mn−1 and then (**) gives (##).

Using these two alternatives we argue as follows. Assume that there is a large enough n2 such
thatmn2 ≤ e−cn2/2. Then an easy induction using the two alternatives above give thatmn ≤ e−cn/2
for all n ≥ n2. If there is no such n2, this mean that for all n ≥ n1 we clearly have the second
alternative and in this case mn ≤ mn1e

−nc/2. In both cases we obtain the exponential decay we
were looking for.

An alternative proof can be given as follows. Take a sufficiently large constant K > 0, which
will be chosen later. Now we look at Bt = Ate

kt. Assume there is a time t ≥ K such that Bt is the
maximum over the time interval [0, t]. We then have Aτ ≤ Ate

−kτ for τ ∈ [0, t] and from (43) with
s = 1,

At

∫ 1

0
e−τAte

kdudτ ≤ ce−Ct,

and from this
1− e−Atek ≤ ceke−Ct,

which gives that
At ≤ −e−k log(1− ceke−Ct).

If we choose the constant K large enough and k small enough, so that 1/2 < 1 − ceke−CK , then
we arrive at

At ≤ ce−Ct ≤ Ce−kt.
In particular this means that Atekt ≤ C. As this Bt is the maximum of Bτ over τ ∈ [0, t], we get
thatAτ ≤ Ce−kt. The other alternative which remains is that there is no t ≥ K for whichBt attains
a maximum on [0, t] for t ≥ K. In this case we deduce that Bt has a maximum for t ∈ [0,K] and
the exponential decay follows again. �.
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Remark. As one can see we do not fully use the condition in (43) for all s ∈ [0, t]. It suffices to have this
hold for s ∈ [0, 1] and large enough t.

Before we close this section let us point out that the exponential decay of the gradient has the
following consequence that we will use later on for the estimates of the higher order derivatives.

Corollary 13. Under the same assumptions as in Theorem 11,

(44) P(s < σ) ≤ C ρ0√
s

for s ∈ (0, t].

Proof. This follows by combining (41), (42), and the fact that c′(s) is bounded (due to the gradient
estimate). �

9. TRIPLE COUPLING

9.1. Basic idea. We have just used coupling to prove the exponential convergence of p̄ to 0 in the
C1-topology. The next step in our analysis is the estimate of the decay of the Hessian of p̄, which,
from the Ricci flow equation, implies the convergence of the curvature to a constant. The basic
idea starts with writing

〈Hess p̄t(z)ξ, ξ〉 = lim
ρ0→0

p̄t(γ(−ρ0))− 2p̄t(z) + p̄t(γ(ρ0))

ρ2
0

where ξ is a unit vector at z, and γ is a geodesic running at unit speed started (at t = 0) at z with
velocity ξ. Now we are concerned with three points, x = γ(−ρ0), y = γ(ρ0), and the middle point
z. As in the gradient estimate case, we want to write p̄(x), p̄(y), and p̄(z) as integrals of some
functions of the associated Brownian motions and then use probabilistic estimates to find bounds
for p̄t(γ(−ρ0))− 2p̄t(z) + p̄t(γ(ρ0)) in terms of ρ0.

There is very little literature on this idea, though it certainly seems that this probabilistic tool is
quite useful for estimating second-order derivatives for evolution equations. The only reference
to this approach we’re aware of is in [10], where it is essentially used to estimate the Hessian of
harmonic functions on Euclidean domains.

To make this idea more precise, we will develop a mechanism of triple coupling (that is, a
coupling of three particles, as opposed to just two). We will use mirror coupling for the processes
corresponding to the particles x and y, taking them as time changed Brownian motions, as in the
previous section. Now we wish to include a third particle, namely z, which we want to couple
together with x and y. It is natural to want to have this “middle particle” remain on the geodesic
joining the other two. We will see that this is possible (at least in the cases we’re considering) if
we allow it to evolve as time-changed Brownian motion, possibly with drift along the direction of
the geodesic.

Instead of starting with a time-changed Brownian motion with drift, zτ and then trying to figure
out the time change and drift necessary so that it stays on the geodesic, we do it the other way
around. Namely, since we want the particle zτ to move on the geodesic, we determine the condi-
tions on the distance to one of the other points so that the corresponding point on the geodesic is
a time-changed Brownian motion with a drift along the geodesic. For the purpose of the Hessian
estimates, and in light of the gradient decay, this will be sufficient.

9.2. Rigorous Approach. Assume we start with an arbitrary Riemannian surface M and that xτ ,
yτ run as time-changed Brownian motions with the time changes a and b, as above. The idea is
that the middle point zτ on the geodesic joining xτ and yτ is completely described by specifying
the distance ρ1,τ from zτ to one of the ends, say xτ . We use a mirror coupling of the particles xτ
and yτ and ρ1,τ will be described in terms of a real-valued SDE. In addition to ρ1, we will also
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consider ρ2, which in intuitive terms is just the distance from the middle particle zτ to yτ . We are
seeking several key symmetry properties which will play an important role in the economy of the
Hessian estimates to follow.

In what follows, as always, fix a time horizon t > 0, and assume that a = a(τ, x, y, ρ1, ρ2) and
b = b(τ, x, y, ρ1, ρ2) are two positive functions defined on [0, t]×M×M×[0,∞)×[0,∞), which will
be time changes for the processes xτ and yτ . To describe this, again denote by mx,y : TxM → TyM
the mirror map, that is, the parallel transport along the minimal unit speed geodesic γx,y joining
x and y (assuming that x, y are not at each other’s cut locus) followed by the reflection about the
orthogonal direction to the geodesic at y.

The system we start with is the following

(45)



dxτ = a(τ)

[
2∑
i=1

ei(xτ ) ◦ dW i
τ

]

dyτ = b(τ)

[
2∑
i=1

Ψτ [ei(yτ )] ◦ dW i
τ

]

dρ1,τ = −a(τ)

2∑
i=1

〈ei(xτ ), γ̇τ (0)〉dW i
τ + α(τ)dW 3

τ + β(τ)dτ

dρ2,τ = b(τ)
2∑
i=1

〈Ψτ [ei(yτ )], γ̇τ (l(τ))〉dW i
τ + α̃(τ)dW 3

τ + β̃(τ)dτ,

where Ψτ = mxτ ,yτ e(xτ )e(yτ )−1 is the reflection map acting on Tyτ , γτ is the minimal geodesic
running at unit speed from xτ to yτ , and W 3 is a one-dimensional Brownian motion independent
of (W 1,W 2). As a notation, let l(τ) be the length of the geodesic γτ . Here we do not specify what
the functions α, α̃, β, β̃ are as we will do this along the way, depending on the properties we want
to reveal. They are defined, like a and b, on [0, t] ×M ×M × [0,∞) × [0,∞). The equations for
ρ1 and ρ2 can be thought of as the equations of the distances from the middle point zτ to xτ and
yτ , as indicated in the previous section, and also as discussed for the coupling in [15, Section 6.6].
Notice here an important point– since

〈Ψτ ei(yτ ), γ̇τ (l(τ))〉 = −〈ei(xτ ), γ̇τ (0)〉,

the last equation of (45) can be rewritten as

(46) dρ2,τ = −b(τ)

2∑
i=1

〈ei(xτ ), γ̇τ (0)〉dW i
τ + α̃(τ)dW 3

τ + β̃(τ)dτ.

There is no problem with the existence of a solution for the system (45) (as long as the entries
a, b, α, β, α̃, and β̃ are smooth) up to the stopping time T , which is the first time τ when ρ1,τρ2,τ

hits 0 or when d(xτ , yτ ) hits a (small) r0 smaller than the injectivity radius. This way we have a
well-defined system and do not have to worry about the extension beyond the cut locus, as we
did in the previous (two particle) coupling case. From now on, during this section we will assume
that the time in the system (45) is run until T .
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The object of interest to us is the process (x, y, ρ1, ρ2). It is clear that this is a diffusion, and it is
a relatively straightforward task to determine that the generator of (x, y, ρ1, ρ2) is

a2

2
∆x +

b2

2
∆y +

a2 + α2

2
∂2
ρ1 +

b2 + α̃2

2
∂2
ρ2 + ab〈mxyX1,i, Y2,j〉X1,iY2,j

− a2〈X1,i, γ̇x,y(0)〉X1,i∂ρ1 − ab〈X1,i, γ̇x,y(0)〉X1,i∂ρ2

− ab〈mx,yX1,i, γ̇x,y(0)〉X1,i∂ρ1 − b2〈mx,yX1,i, γ̇x,y(0)〉X1,i∂ρ2

+ (αα̃− ab
2∑
i=1

〈X1,i, γ̇x,y(0)〉2)∂ρ1∂ρ2 + β∂ρ1 + β̃∂ρ2 ,

with X1,i, i = 1, 2 being an orthonormal basis of TxM and Y2,j , j = 1, 2 an orthonormal basis
of TyM . In fact, we can choose X1,1 = γ̇x,y(0) and X1,2 = ξ1 ∈ TxM , which is perpendicular
to γ̇x,y(0). Similarly, choose Y2,1 = γ̇y,x(0) and Y2,2 = ξ2 = mx,yξ1, or said simply, the parallel
transport of ξ1 along the geodesic γx,y. With these choices, the generator simplifies to

L =
a2

2
∆x +

b2

2
∆y +

a2 + α2

2
∂2
ρ1 +

b2 + α̃2

2
∂2
ρ2 + ab(γ̇x,y(0)γ̇y,x(0) + ξ1ξ2)

− a2γ̇x,y(0)∂ρ1 − abγ̇y,x(0)∂ρ1

− abγ̇x,y(0)∂ρ2 − b2γ̇y,x(0)∂ρ2

+ (αα̃− ab)∂ρ1∂ρ2 + β∂ρ1 + β̃∂ρ2 .

(47)

The first property we want to see is that ρ1 + ρ2 = ρ. This property is nothing but the geometric
picture that ρ1 is the distance from zτ to xτ while ρ2 is the distance between zτ to yτ .

To do this we recall that the distance ρτ between the mirror-coupled processes xτ and yτ is given
by

(48) dρτ = −(a(τ) + b(τ))
2∑
i=1

〈ei(xτ ), γ̇τ (0)〉dW i
τ +

1

2
I(τ)dτ

where I is the index form of the Jacobi field J(τ) along the geodesic γτ which, at the endpoints,
has values aE and bE. We use the notation E for the parallel translation of ξ1 ∈ TxM along the
geodesic joining x and y. The index form is computed as

I(J, J) =

∫ l(γ)

0
|J̇(u)|2 + 〈R(γ̇(u), J(u))γ̇(u), J(u)〉du,

with l(γ) being the length of the geodesic γ. Here the curvature tensor is the standard tensor
curvature given as in [5]

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ].

On the other hand, from (45),

d(ρ1,τ + ρ2,τ ) = −(a(τ) + b(τ))
2∑
i=1

〈ei(xτ ), γ̇τ (0)〉dW i
τ + (α(τ) + α̃(τ))dW 3

τ + (β(τ) + β̃(τ))dτ.

We clearly see here that ρτ and ρ1,τ + ρ2,τ have the same martingale part if α̃ = −α. The choice for
β and β̃ is provided by the following result.
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Theorem 14. Assume that

(49)


α̃ = −α
β(τ, x, y, ρ1, ρ2) = 1

2

∫ ρ1
0 |J̇(u)|2 + 〈R(γ̇(u), J(u))γ̇(u), J(u)〉du

β̃(τ, x, y, ρ1, ρ2) = 1
2

∫ l(γ)
l(γ)−ρ2 |J̇(u)|2 + 〈R(γ̇(u), J(u))γ̇(u), J(u)〉du

where J is the Jacobi field along the geodesic γ from x to y and having values aE at 0 and bE at l(γ).
If in addition, ρ1,0 = ρ2,0 = ρ0/2, then almost surely ρτ = ρ1,τ + ρ2,τ .

Proof. Take ρ̃1,τ = ρτ − ρ2,τ . It is clear now that we have

d(ρ̃1,τ − ρ1,τ ) =

∫ ρ̃1,τ

0
A(u)du−

∫ ρ1,τ

0
A(u)du

with
A(u) =

1

2

[
|J̇(u)|2 + 〈R(J(u), γ̇(u))γ̇(u), J(u)〉du

]
.

From here, the fact that ρ̃1,0 = ρ1,0 (or ρ̃1,0 − ρ1,0 = 0) and standard application of Gronwall’s
inequality leads to ρ̃1,τ = ρ1,τ , which is what we want. �

We return now to the case where the curvature is constant and start with [4, Lemma 3.4] which
says that

(50) R(X,Y )Z = −r(〈X,Z〉Y − 〈Y,Z〉X).

We should point out that the Do Carmo [4], takes the curvature to be given by the negative of
the curvature we consider here, or for that matter other people. Then the Jacobi field equation
becomes

J̈ −R(γ̇, J)γ̇ = 0

or equivalently,

(51) J̈ + rJ − r〈γ̇, J〉γ̇ = 0.

Since this Jacobi field is perpendicular to the geodesic, it follows that
J̈ + rJ = 0

J(0) = aE

J(l(γ)) = bE.

The solution is

(52) J(s) = (aw1(s) + bw2(s))E(s) for s ∈ [0, l(γ)]

where w1, w2 are defined on the interval [0, l(γ)] by the following odes

(53)


ẅ1 + rw1 = 0

w1(0) = 1

w1(l(γ)) = 0.

and


ẅ2 + rw2 = 0

w2(0) = 0

w2(l(γ)) = 1.

An integration by parts argument together with the equation of the Jacobi field and the constant
curvature assumption reveals that∫ s

0
|J̇(u)|2 − 〈R(J(u), γ̇(u))γ̇(u), J(u)〉du =

∫ s

0
|J̇(u)|2 − r|J(u)|2du

= 〈J̇(s), J(s)〉 − 〈J̇(0), J(0)〉 = (aw1(s) + bw2(s))(aẇ1(s) + bẇ2(s))− a(aẇ1(0) + bẇ2(0))
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and ∫ l(γ)

s
|J̇(u)|2 − 〈R(J(u), γ̇(u))γ̇(u), J(u)〉du = 〈J̇(l(γ)), J(l(γ))〉 − 〈J̇(s), J(s)〉

= a(aẇ1(l(γ)) + bẇ2(l(γ)))− (aw1(s) + bw2(s))(aẇ1(s) + bẇ2(s)).

A direct consequence of these formulae and the fact that w2(s) = w1(l(γ)− s), plus a few elemen-
tary manipulations, results in∫ l(γ)

l(γ)−s
|J̇(u)|2−〈R(J(u), γ̇(u))γ̇(u), J(u)〉du = (bw1(s)+aw2(s))(bẇ1(s)+aẇ2(s))−a(bẇ1(0)+aẇ2(0))).

Summarizing, the choices of β and β̃ from (49) in the case of constant curvature become more
explicitly:

(54)

{
β = 1

2 ((aw1(ρ1) + bw2(ρ1))(aẇ1(ρ1) + bẇ2(ρ1))− a(aẇ1(0) + bẇ2(0)))

β̃ = 1
2 ((bw1(ρ2) + aw2(ρ2))(bẇ1(ρ2) + aẇ2(ρ2))− a(bẇ1(0) + aẇ2(0)))) .

It goes without saying that here a and b are evaluated at (τ, x, y, ρ1, ρ2).
We say that a function f(τ, x, y, ρ1, ρ2) is symmetric in ρ1 and ρ2 if f(τ, x, y, ρ1, ρ2) = f(τ, x, y, ρ2, ρ1).
Before we move on to another property of the diffusion (x, y, ρ1, ρ2), we close the discussion so

far with the following property of the choices of β and β̃ from (49) :

(55) If a and b are equal and symmetric in ρ1 and ρ2, then β(τ, x, y, ρ1, ρ2) = β̃(τ, x, y, ρ2, ρ1).

A symmetry which plays a crucial role in the Hessian estimates is the following.

Theorem 15. If, in equation (45), we take

a and α symmetric in ρ1 and ρ2

b = a

α̃ = −α
β̃(τ, x, y, ρ1, ρ2) = β(τ, x, y, ρ2, ρ1)

ρ1,0 = ρ2,0,

then the processes (x, y, ρ1, ρ2) and (x, y, ρ2, ρ1) have the same law. In particular, the processes (x, y, ρ1)
and (x, y, ρ2) have the same law.

Proof. Although this is almost trivial, we say a word about it. If L is the generator of a diffusion
ωτ on a manifoldM and π :M→M is such that for any smooth function ϕ :M→ R,

L(ϕ ◦ π) = (Lϕ) ◦ π,
then uniqueness of the diffusion implies that ω and π(ω) have the same law. This can be easily
seen from the martingale characterization of the law of the diffusion. We apply this to the operator
L from (47) and the map π(x, y, ρ1, ρ2) = (x, y, ρ2, ρ1). The rest follows. �

Notice that (cf. (54)), the choices of β and β̃ from Theorem 14 are actually consistent with the
conditions of Theorem 15 under the assumptions that a and b are equal and symmetric.

The “middle particle” process we are interested is

(56) zτ = γxτ ,yτ (ρ1,τ ).

The symmetry between ρ1 and ρ2 should be interpreted as saying that the reflection of the
process zτ with respect to the middle point of the geodesic γxτ ,yτ has the same law as zτ itself.
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Our next objective is the law of zτ . Before we jump into the heart of the matter, we take up a
discussion on the following class of vector fields that play that are the main actors in our compu-
tation.

Assume we have a geodesic γ from x to y with length l and consider a smooth, two-parameter
geodesic perturbation f : (−ε, ε)× (−ε, ε)× [0, l]→M of γ, i.e. f(0, 0, s) = γ(s) and for each fixed
choice of u and v, the curve s→ f(u, v, s) is a geodesic. One of the things we want to understand
is the field

K(s) =
D

du

D

dv
f(u, v, s)

∣∣
u=0,v=0

.

Let Jv(s) = D
dvf(u, v, s)

∣∣
v=0

be the Jacobi field obtained by differentiating f with respect to v.
Similarly let Ju(s) = D

duf(u, v, s)
∣∣
u=0

be the Jacobi field obtained by differentiating f with respect
to u. In order to determine the equation satisfied byK, we recall here [4, Lemma 4.1], which asserts
that for any two-parameter family g(a, b) and vector field V along g,

(57)
D

da

D

db
V − D

db

D

da
V = −R

(
Dg

db
,
Dg

da

)
V.

Recall here that Do Carmo [4] uses the curvature as the negative of what other people use, as for
instance [5].

Now, what we want to do is find a differential equation satisfied by K. As pointed out already,
K(s) = D

duJv(s) and starting with (51) for Jv, namely,

D2

ds2
Jv + rJv − r〈γ̇, Jv〉γ̇ = 0

we take the derivative with respect to u to arrive at

D

du

D2

ds2
Jv + rK − r

〈
D

du
γ̇, Jv

〉
γ̇ − k〈γ̇,K〉γ̇ − r〈γ̇, Jv〉

D

du
γ̇ = 0.

To move forward, use that D
du γ̇ = D

ds
D
duγ = J̇u to re-write the previous equation as

D

du

D2

ds2
Jv + rK − r〈K, γ̇〉γ̇ − r〈J̇u, Jv〉γ̇ − r〈γ̇, Jv〉J̇u = 0.

Our task now is to commute the derivatives with respect to u and s. For this, use (57) and (50)
to justify

D

du

D2

ds2
Jv =

D

ds

D

du

D

ds
Jv −R

(
Df

ds
,
Df

du

)
J̇v =

D

ds

D

du

D

ds
Jv −R (γ̇, Ju) J̇v

=
D

ds

D

du

D

ds
Jv + r

(
〈γ̇, J̇v〉Ju − 〈Ju, J̇v〉γ̇

)
.

(*)

Now we once again employ (57),

D

ds

D

du

D

ds
Jv =

D2

ds2

D

du
Jv −

D

ds

(
R

(
Df

ds
,
Df

du

)
Jv

)
= K̈ − D

ds
(R (γ̇, Ju) Jv)

= K̈ + r
D

ds
(〈γ̇, Jv〉Ju − 〈Ju, Jv〉γ̇)

= K̈ + r
(
〈γ̇, J̇v〉Ju + 〈γ̇, Jv〉J̇u − 〈J̇u, Jv〉γ̇ − 〈Ju, J̇v〉γ̇

)
.

(**)



STOCHASTIC APPROACH TO RICCI FLOW 39

Putting together (*) and (**) at u = 0, we obtain

D

du

D2

ds2
Jv = K̈ + r

(
2〈γ̇, J̇v〉Ju + 〈γ̇, Jv〉J̇u − 〈J̇u, Jv〉γ̇ − 2〈Ju, J̇v〉γ̇

)
,

and finally,

(58) K̈ + rK − k〈K, γ̇〉γ̇ + 2r
(
〈γ̇, J̇v〉Ju − 〈J̇u, Jv〉γ̇ − 〈Ju, J̇v〉γ̇

)
= 0.

The boundary conditions imposed here are the natural ones{
K(0) = D

du
D
dvf(u, v, 0)

K(l) = D
du

D
dvf(u, v, l).

The typical example of the type of perturbation f(u, v, s) that will appear below is given by the
following. Take a geodesic γ defined on [0, l] and consider two geodesic curves, η1(u) starting at
γ(0) and another, η2(v), started at γ(l). Then we take f(u, v, ·) to be the geodesic run at unit speed
from η1(u) to η2(v).

We discussed the case of a two-parameter perturbation of the geodesic γ in the form f(u, v, s)
but exactly the same argument works also for the case where f(u, s) is a perturbation with geodesics
of γ, and we consider the field

K(s) =
D2

du2
f(u, s)

∣∣
u=0

.

The main result from the argument above then gives that

(59) K̈ + rK − r〈K, γ̇〉γ̇ + 2r
(
〈γ̇, J̇u〉Ju − 2〈Ju, J̇u〉γ̇

)
= 0,

with Ju(s) = D
duf(u, s)|u=0.

We are finally ready for the next result.

Theorem 16. Assume that

α(τ, x, y, ρ1, ρ2) = a(τ, x, y, ρ1, ρ2)w1(ρ1) + b(τ, x, y, ρ1, ρ2)w2(ρ1)

θ(τ, x, y, ρ1, ρ2) = β(τ, x, y, ρ1, ρ2) + r

(∫ ρ1

0
(a(τ, x, y, ρ1, ρ2)w1(σ) + b(τ, x, y, ρ1, ρ2)w2(σ))2dσ

− ρ1

l

∫ l

0
(a(τ, x, y, ρ1, ρ2)w1(σ) + b(τ, x, y, ρ1, ρ2)w2(σ))2dσ

)

(60)

with w1 and w2 defined by (53). With these choices, the process zτ = γxτ ,yτ (ρ1,τ ) has the property that, for
any smooth function ϕ on M ,

(61) ϕ(zτ )−
∫ τ

0

(
α2(u)

2
[∆ϕ](zu) + θ(u)〈∇ϕ(zu), γ̇xu,yu(ρ1,u))〉

)
du

is a martingale with respect to the filtration generated by W1, W2, and W3. Inside the integral, α(u) and
θ(u) are shorthand for α and θ evaluated at (u, xu, yu, ρ1,u, ρ2,u) In other words, zτ is a time-changed
Brownian motion (with the time change given by α) with a drift in the geodesic direction from xτ to yτ .

Proof. The idea of the proof is to start with the generator of the diffusion (x, y, ρ1) and a function
ϕ and look at the process ϕ(zτ ). More precisely, we find the bounded variation part of this. It
is clear that, in terms of the generator (47), we need to compute the action of each term of this
expression on ϕ(γx,y(s)). Notice that the part which involves derivatives of ρ2 simply drops out
in this calculation.
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For simplicity we will drop the dependence on τ , x, and y in the notation and let l = d(x, y).
Thus the geodesic γx,y will appear as γ. Let E denote the parallel vector field along γ which is
obtained by parallel translation of ξ1.

Now we take the terms one by one. Again for simplicity in writing, we will use s instead of ρ1

as the parameter in the geodesic direction.
(1) We write the Laplacian term as

∆x[ϕ(γx,y(s))] =
d2

du2
ϕ(γηu,1,y(s)) +

d2

du2
ϕ(γηu,2,y(s))

where ηu,1 and ηu,2 are geodesics starting at x and having derivatives given by η̇0,1 =
γ̇x,y(0) and η̇0,2 = ξ1. Then we continue with

∆x[ϕ(γx,y(s))] = 〈Hessϕ(γ(s))γ̇(s), γ̇(s)〉+ 〈Hessϕ(γ(s))J1(s), J1(s)〉

+

〈
∇ϕ(γ(s)),

D2

∂u2
γηu,1,y(s)

∣∣∣∣
u=0

〉
+

〈
∇ϕ(γ(s)),

D2

∂u2
γηu,2,y(s)

∣∣∣∣
u=0

〉
(62)

where J1 is the Jacobi field along γ given by J1(s) = D
duγηu,2,y(s)|u=0, which can also be

characterized as the Jacobi field with the boundary conditions J1(0) = ξ1 and J1(l) = 0.

On the other hand, if we look atK(s) = D2

∂u2
γηu,2,y(s)

∣∣∣∣
u=0

, using (59) we obtain the equation

satisfied by K as
K̈ + rK − r〈K, γ̇〉γ̇ + 2r

(
〈γ̇, J̇1〉J1 − 2〈J1, J̇1〉γ̇

)
= 0

K(0) = 0

K(l) = 0.

Notice here that the boundary conditions follow from the fact that ηu,2 is a geodesic and
that γηu,2,y(l) = y.

Now, the Jacobi field J1 is given by

J1(s) = w1(s)E(s)

and this in turn gives the equation of K as
K̈ + rK − r〈K, γ̇〉γ̇ = 4rw1ẇ1γ̇

K(0) = 0

K(l) = 0.

We solve this as

(63) K = w1,0γ̇ with w1,0(s) = 2r

∫ s

0
w2

1(σ)dσ − 2sr

l

∫ l

0
w2

1(σ)dσ.

The conclusion is that

∆x[ϕ(γx,y(s))] =〈Hessϕ(γ(s))γ̇(s), γ̇(s)〉+ w2
1(s)〈Hessϕ(γ(s))E(s), E(s)〉+ w1,0(s)〈∇ϕ(γ(s)), γ̇(s)〉.

(64)

(2) In the same vein, with very few changes, we can treat the next term, which is the Laplacian
∆y applied to ϕ(γ(s)). To this end, start with the following equation,

∆y[ϕ(γ(s))] = 〈Hessϕ(γ(s))J2(s), J2(s)〉

+

〈
∇ϕ(γ(s)),

D2

∂u2
γx,ηu,1(s)

∣∣∣∣
u=0

〉
+

〈
∇ϕ(γ(s)),

D2

∂u2
γx,ηu,2(s)

∣∣∣∣
u=0

〉
(65)
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which is an analogue of (62) with the role of x being played by y, ηu,1 a geodesic starting
at y with initial speed given by γ(l), and ηu,2 a geodesic starting at y with initial speed
ξ2 = E(l). Here J2 is the Jacobi field which is 0 at 0 and ξ2 at l. As in the case of J1, we can
show that

J2(s) = w2(s)E(s).

The first term in the second line of (65) is 0 because γx,ηu,1(s) does not depend on u. The
second term can be dealt with in a similar way to that outlined above in dealing with the
derivative of the Jacobi field. We skip the details and give the main result. Let

K(s) =
D2

∂u2
γx,ηu,2(s)

∣∣∣∣
u=0

.

From (59), the equation satisfied by K (with w2 given by (53)) is

(66) K = w0,1γ̇ with w0,1(s) = 2r

∫ s

0
w2

2(σ)dσ − 2sr

l

∫ l

0
w2

2(σ)dσ.

Then we have

∆y[ϕ(γx,y(s))] =〈Hessϕ(γ(s))γ̇(s), γ̇(s)〉+ w2
2(s)〈Hessϕ(γ(s))E(s), E(s)〉+ w0,1(s)〈∇ϕ(γ(s)), γ̇(s)〉.

(67)

(3) For the next term, matters are fairly simple. Namely, because we are differentiating with
respect to the geodesic parameter s,

(68) ∂2
s [ϕ(γx,y(s))] = 〈Hessϕ(γx,y(s))γ̇x,y(s), γ̇x,y(s)〉.

(4) Next in line is

(69) γ̇x,y(0)γ̇y,x(0)[ϕ(γx,y(s))] = 0.

This produces 0 because
γ̇y,x(0)[ϕ(γx,y(s))] = 0,

which follows from the fact that perturbing y along a curve ηu,2 in the geodesic direction
of γx,y yields that γx,ηu,2(s) = γx,y(s), and thus is independent of u.

(5) Now we deal with
ξ1ξ2[ϕ(γx,y(s))].

To this end, consider the geodesics ηu,1 and ηv,2 which start at x (respectively y) and have
the tangent vectors ξ1 (respectively ξ2). What we need to compute is

D

du

D

dv
[ϕ(γx,y(s))]

∣∣∣∣
u=v=0

= 〈Hessϕ(γx,y(s))J1(s), J2(s)〉+

〈
∇ϕ(γx,y(s)),

D

du

D

dv
γηu,1,ηv,2(s)

∣∣∣∣
u=v=0

〉
.

If we let

K(s) =
D

du

D

dv
γηu,1,ηv,2(s)

∣∣∣∣
u=v=0

,

from (58), we obtain
K̈ + rK − r〈K, γ̇〉γ̇ = 2r(w1ẇ2 + w2ẇ1)γ̇

K(0) = 0

K(l) = 0,

which we solve as

(70) K = w1,1γ̇ with w1,1(s) = 2r

∫ s

0
w1(σ)w2(σ)σ − 2sr

l

∫ l

0
w1(σ)w2(σ)dσ.
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We conclude that

(71) ξ1ξ2[ϕ(γx,y(s))] = w1(s)w2(s)〈Hessϕ(γ(s))E(s), E(s)〉+ w1,1(s)〈∇ϕ(γ(s)), γ̇(s)〉.

(6) Next is the following

γ̇x,y(0)∂s[ϕ(γx,y(s))] = γ̇(0)〈∇ϕ(γ(s)), γ̇(s)〉
= 〈Hessϕ(γ(s))γ̇(s), γ̇(s)〉+ 〈∇ϕ(γ(s)), γ̈(s)〉.

Therefore, since γ is geodesic,

(72) γ̇(0)∂s[ϕ(γx,y(s))] = 〈Hessϕ(γ(s))γ̇(s), γ̇(s)〉.

(7) Now,

(73) γ̇y,x(0)∂s[ϕ(γx,y(s))] = 0,

as can be easily seen from the fact that perturbing y in the geodesic direction (say, along
ηv) reveals that γx,ηv(s) = γx,y(s), so that the derivative with respect to v vanishes.

(8) The last term is easy to deal with and gives

(74) ∂s[ϕ(γx,y(s))] = 〈∇ϕ(γ(s)), γ̇(s)〉.

Putting together all the results from (64)-(74) we arrive at (we drop the subscripts x and y)

L[ϕ(γ(s))] =
α2

2
〈Hessϕ(γ(s))γ̇(s), γ̇(s)〉+

(aw1(s) + bw2(s))2

2
〈Hessϕ(γ(s))E(s), E(s)〉

+

(
β +

a2w1,0 + b2w0,1 + 2abw1,1

2

)
〈∇ϕ(γ(s)), γ̇(s)〉.

(75)

A little simplification follows from

a2w1,0 + b2w0,1 + 2abw1,1 = 2r

(∫ s

0
(a(s)w1(τ) + b(s)w2(τ))2dτ − s

l

∫ l

0
(a(s)w1(τ) + b(s)w2(τ))2dτ

)
which then gives the result of the theorem, for the choice of α as in (60). �

We close this section with the following result summarizing all of the important findings for the
next section.

Corollary 17. Assume that the entries of (45) satisfy

(76)



a is symmetric in ρ1 and ρ2

b = a

α̃ = −α
α(τ, x, y, ρ1, ρ2) = a(τ, x, y, ρ1, ρ2)w(ρ1)

β(τ, x, y, ρ1, ρ2) = 1
2a

2(τ, x, y, ρ1, ρ2)(w(ρ1)ẇ(ρ1)− ẇ(0))

β̃(τ, x, y, ρ1, ρ2) = 1
2a

2(τ, x, y, ρ1, ρ2)(w(ρ2)ẇ(ρ2)− ẇ(0))

ρ1,0 = ρ2,0 = ρ0/2

with


ẅ + rw = 0

w(0) = 1

w(d(x, y)) = 1.

Then
(1) ρ1,τ + ρ2,τ = ρτ almost surely.
(2) The diffusions (xτ , yτ , ρ1,τ , ρ2,τ ) and (xτ , yτ , ρ2,τ , ρ1,τ ) have the same law. In particular, (xτ , yτ , ρ1,τ )

and (xτ , yτ , ρ2,τ ) have the same law.
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(3) If zτ = γxτ ,yτ (ρ1,τ ), then for any smooth function ϕ on M ,

(77) ϕ(zτ )−
∫ τ

0

(
α2(u)

2
[∆ϕ](zu) + θ(u)〈∇ϕ(zu), γ̇xu,yu(ρ1,u))〉

)
du

is a martingale with respect to the filtration generated by W1, W2, and W3, where

θ(τ, x, y, ρ1, ρ2) = β(τ, x, y, ρ1, ρ2) + ra2(τ, x, y, ρ1, ρ2)

(∫ ρ1

0
w2(σ)dσ − ρ1

d(x, y)

∫ d(x,y)

0
w2(σ)dσ

)
.

A word is in place here. The statement of Theorem 15 requires the symmetry of αwith respect to
ρ1 and ρ2. This is not satisfied by the choice in (76) for arbitrary ρ1 and ρ2. However, because of the
choice of β and β̃ and Theorem 14, we know that (almost surely) ρ1,τ + ρ2,τ = ρτ . So it suffices to
ensure the symmetry of α and α̃with respect to ρ1 and ρ2 only in the case that ρ1+ρ2 = ρ = d(x, y),
which follows from the fact that w(s) = w(d(x, y)− s) for s ∈ [0, d(x, y)].

For a given l, the solution w to (76) is

(78) w(s) =
cos ((l − 2s)

√
r/2)

cos(l
√
r/2)

.

In particular, for r = 0 or −1 and l bounded, w(s) is bounded and so are all its derivatives.

10. ESTIMATES ON THE HESSIAN DECAY FOR χ(M) ≤ 0

For Euler characteristic less than or equal to 0, we know that p̄t and ∇p̄t decay exponentially
fast. Our goal is now to extend this to the Hessian of p̄t, resulting in the converge of the metric to
the constant curvature metric in C2. In particular, the curvature converges to a constant.

To estimate the Hessian decay, we proceed in a similar way to the estimation of the gradient,
only that now we need to use a coupling procedure for three points rather than two.

Let us denote, for t > 0,
Ht = sup

x∈M
|Hess p̄t(x)|.

What we want to show is that Ht decays to 0 exponentially fast.

Theorem 18. For the case χ(M) ≤ 0, Ht converges to 0 exponentially fast as t→∞.

Proof. To begin with, notice that

(79) 〈Hess p̄t(z)ξ, ξ〉 = lim
ρ0→0

p̄t(γ(−ρ0))− 2p̄t(z) + p̄t(γ(ρ0))

ρ2
0

where γ is the unique geodesic passing through z and having the initial velocity given by ξ. Thus,
similarly to the case of the gradient estimate, we will use the three particle coupling to get a handle
on the right-hand side of the above quantity, for sufficiently small ρ0.

For convenience, fix a time t > 0 and let s ∈ [0, 1∧ t]. Pick two points x, y ∈M , with d(x, y) = ρ0

small enough, and let z be the middle point on the geodesic between x and y such that d(x, z) =
d(z, y) = ρ0/2. Consider the triple coupling described by (45) with the choices from Corollary 17.
All the data there is completely described by the choice of the time change a of the processes xτ
and yτ . In this section we choose

(80) a(τ, x, y, ρ1, ρ2) = e−p̄t−τ (λx,y)

where λx,y is the middle point on the geodesic between x and y. This choice does not depend on
ρ1 or ρ2, and consequently it is symmetric in ρ1 and ρ2, as required by Corollary 17. Other choices
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are possible for the argument here, but we stick with this because it is symmetric with respect to
x and y and makes some of the estimates look more natural.

Now, we consider p̄t−σ(zσ), where zτ is defined in the previous section. Again invoking Corol-
lary 17, we learn that

dp̄t−τ (zτ ) = M1,τ +
(
−∂tp̄t−τ (zτ ) + α2(τ)∆p̄t−τ (zτ ) + θ(τ)〈∇p̄t−τ (τ), γ̇τ 〉

)
dτ.

where M1,τ is a martingale. From the Ricci flow equation, ∂tp̄t−τ (zτ ) = e−2p̄t−τ (zτ )∆p̄t−τ (zτ ) +

r(1− e−2p̄t−τ (zτ )) so we continue with
(81)
dp̄t−τ (zτ ) = M1,τ+

((
α2(τ)− e−2p̄t−τ (zτ )

)
∆p̄t−τ (zτ ) + θ(τ)〈∇p̄t−τ (τ), γ̇τ 〉 − r(1− e−2p̄t−τ (zτ ))

)
dτ.

For the semimartingale p̄t−τ (xτ ) we have from (45) and the Ricci flow equation that

(82) dp̄t−τ (xτ ) = M2,τ +
(

(e−2p̄t−τ (λτ ) − e−2p̄t−τ (xτ ))∆p̄t−τ (xτ )− r(1− e−2p̄t−τ (xτ )
)
dτ

where λτ is the middle point of the geodesic joining xτ and yτ . Similarly for p̄t−τ (yτ ),

(83) dp̄t−τ (yτ ) = M3,τ +
(

(e−2p̄t−τ (λτ ) − e−2p̄t−τ (yτ ))∆p̄t−τ (yτ )− r(1− e−2p̄t−τ (yτ )
)
dτ.

Now, putting these together,

p̄t−τ (xτ )− 2p̄t−τ (zτ ) + p̄t−τ (yτ ) = p̄t(x)− 2p̄t(z) + p̄t(y) +Mτ

+

∫ τ

0

((
α2(u)− e−2p̄t−u(zu)

)
∆p̄t−u(zu)

)
du

+

∫ τ

0
θ(u)〈∇p̄t−u(u), γ̇u〉du

+

∫ τ

0

(
(e−2p̄t−u(λu) − e−2p̄t−u(xu))∆p̄t−u(xu) + (e−2p̄t−u(λu) − e−2p̄t−u(yu))∆p̄t−u(yu)

)
du

+ r

∫ τ

0
(e−2p̄t−u(xu) − 2e−2p̄t−u(zu) + e−2p̄t−u(yu))du

(84)

where Mτ is a martingale.
From the definition of α in Corollary 17 and the fact that we stop the processes before the

distance between x and y hits some small number r0, it is not hard to prove that there is a constant
C > 0 such that

|α(u)− a(u)| ≤ Cρ1d(x, y),

which in turn, using the gradient decay estimates and the fact that d(zu, λu) ≤ d(xu, yu)/2 = ρu/2,
leads to∣∣∣α2(u)− e−2p̄t−u(zu)

∣∣∣ ≤ Cρ1,u + |e−2p̄t−τ (zu) − e−2p̄t−u(λu)| ≤ Cρ2
u + Ce−Ctρu ≤ Cρu.

Observe here that we do not need the full power of the exponential decay of the gradient. Just the
boundedness suffices for this particular estimate, but used in conjunction with the definition of θ
from Corollary 17 it justifies

|θ(u)〈∇p̄t−u(u), γ̇u〉| ≤ cρ1,ue
−Ct.

Finally, from the exponential decay of the gradient and elementary arguments,∣∣∣e−2p̄t−u(xu) − e−2p̄t−u(zu)
∣∣∣+
∣∣∣e−2p̄t−u(yu) − e−2p̄t−u(zu)

∣∣∣ ≤ cρue−Ct



STOCHASTIC APPROACH TO RICCI FLOW 45

and also ∣∣∣e−2p̄t−u(xu) − e−2p̄t−u(λu)
∣∣∣+
∣∣∣e−2p̄t−u(yu) − e−2p̄t−u(λu)

∣∣∣ ≤ cρue−Ct.
Now, let σ be the first time u when ρ1,u or ρ2,u becomes 0, and let ζ be the first time u when ρu

hits r0, a small number (less than half of the injectivity radius). Replacing τ by τ ∧σ∧ ζ in (84) and
then taking the expectation at τ = 0 and τ = s, combined with the above estimates, leads to

|p̄t(x)− 2p̄t(z) + p̄t(y)| ≤|E[p̄t−s∧σ∧ζ(xs∧σ∧ζ)− 2p̄t−s∧σ∧ζ(zs∧σ∧ζ) + p̄t−s∧σ∧ζ(ys∧σ∧ζ)]|

+ ce−CtE
[∫ s∧σ∧ζ

0
ρudu

]
+ cE

[∫ s∧σ∧ζ

0
ρuHt−udu

](85)

Next, the stopping time σ is T1 ∧ T2, where T1 and T2 are, respectively, the first time ρ1 hits 0 and
the first time ρ2 hits 0. Now we can write

E[p̄t−s∧σ∧ζ(xs∧σ∧ζ)− 2p̄t−s∧σ∧ζ(zs∧σ∧ζ) + p̄t−s∧σ∧ζ(ys∧σ∧ζ)]

=E[p̄t−s∧ζ(xs∧ζ)− 2p̄t−s∧ζ(zs∧ζ) + p̄t−s∧ζ(ys∧ζ), ζ < σ]

+ E[p̄t−s∧σ(xs∧σ)− 2p̄t−s∧σ(zs∧σ) + p̄t−s∧σ(ys∧σ), σ ≤ ζ]

=E[p̄t−s∧ζ(xs∧ζ)− 2p̄t−s∧ζ(zs∧ζ) + p̄t−s∧ζ(ys∧ζ), ζ < σ]

+ E[p̄t−T1(yT1)− p̄t−T1(xT1), T1 < T2 ≤ s ∧ ζ] + E[p̄t−T2(xT2)− p̄t−T2(yT2), T2 < T1 ≤ s ∧ ζ]

+ E[p̄t−T1(yT1)− p̄t−T1(xT1), T1 < s ≤ T2 ∧ ζ] + E[p̄t−T2(xT2)− p̄t−T2(yT2), T2 < s ≤ T1 ∧ ζ]

+ E[p̄t−s(xs)− 2p̄t−s(zs) + p̄t−s(ys), s ≤ σ ≤ ζ].

(86)

The main point of this expresson is that, due to the symmetry with respect to ρ1 and ρ2 from
Corollary 17, we have the crucial cancellations

(87) E[p̄t−T1(yT1)− p̄t−T1(xT1), T1 < T2 ≤ s ∧ ζ] + E[p̄t−T2(xT2)− p̄t−T2(yT2), T2 < T1 ≤ s ∧ ζ] = 0

and also

(88) E[p̄t−T1(yT1)− p̄t−T1(xT1), T1 < s ≤ T2 ∧ ζ] + E[p̄t−T2(xT2)− p̄t−T2(yT2), T2 < s ≤ T1 ∧ ζ] = 0.

Furthermore, from the exponential decay of p̄ and ∇p̄, for any s ∈ [0, t] we have

|E[p̄t−s∧σ∧ζ(xs∧σ∧ζ)− 2p̄t−s∧σ∧ζ(zs∧σ∧ζ) + p̄t−s∧σ∧ζ(ys∧σ∧ζ)]|
≤|E[p̄t−s∧ζ(xs∧ζ)− 2p̄t−s∧ζ(zs∧ζ) + p̄t−s∧ζ(ys∧ζ), ζ < σ]|+ |E[p̄t−s(xs)− 2p̄t−s(zs) + p̄t−s(ys), s ≤ σ ≤ ζ]|
≤ce−CtP(ζ ≤ s ∧ σ) + ce−CtE[ρs, s ≤ σ ∧ ζ].

where we used the following inequalities

|E[p̄t−s∧ζ(xs∧ζ)− 2p̄t−s∧ζ(zs∧ζ) + p̄t−s∧ζ(ys∧ζ), ζ < σ]|
≤ |E[p̄t−s(xs)− 2p̄t−s(zs) + p̄t−s(ys), s < ζ < σ]|+ |E[p̄t−ζ(xζ)− 2p̄t−ζ(zζ) + p̄t−ζ(yζ), ζ ≤ s ∧ σ]|
≤ ce−CtE[ρs, s < σ ∧ ζ] + ce−CtP(ζ ≤ s ∧ σ).

Putting these together into (85), plus a little simplification, gives that for any s ∈ [0, t]

|p̄t(x)− 2p̄t(z) + p̄t(y)| ≤ce−CtP(ζ ≤ s ∧ σ) + ce−CtE[ρs, s ≤ σ ∧ ζ]

+ ce−Ct
∫ s

0
E[ρu, u ≤ σ ∧ ζ]du+ c

∫ s

0
Ht−uE[ρu, u ≤ σ ∧ ζ]du.

A further simplification is due to the symmetry with respect to ρ1 and ρ2 from Corollary 17, which
has the effect that

E[ρu, u < σ ∧ ζ] = 2E[ρ1,u, u < σ ∧ ζ],
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and thus for s ∈ [0, t],

|p̄t(x)− 2p̄t(z) + p̄t(y)| ≤Ce−CtP(ζ < s ∧ σ) + Ce−CtE[ρ1,s, s < σ ∧ ζ]

+ e−Ct
∫ s

0
E[ρ1,u, u < σ ∧ ζ]du+ C

∫ s

0
Ht−uE[ρ1,u, u < σ ∧ ζ]du.

(89)

The key step forward is the following result.

Theorem 19. Let W 1, W 2, and W 3 be three independent, one-dimensional Brownian motions, and let ρ̃1

and ρ̃2 be two processes such that ρ̃1,0 = ρ̃2,0 = ρ̃0 > 0 and

(90)

{
dρ̃1,τ = (1 +O(ρ̃1,τ ))(AτdW

1
τ +BτdW

2
τ ) + (1 +O(ρ̃1,τ ))dW 3

τ +O(1)dτ

dρ̃2,τ = (1 +O(ρ̃2,τ ))(AτdW
1
τ +BτdW

2
τ )− (1 +O(ρ̃2,τ ))dW 3

τ +O(1)dτ

with A2
τ +B2

τ = 1.
Let σ̃ be the first hitting time of 0 for the process ρ̃1ρ̃2 and ζ̃ the first time either ρ̃1 or ρ̃2 hits some value

r̃0. Assume that (90) is valid for τ ∈ [0, σ̃ ∧ ζ̃], and in addition that for some constant C > 0

(91) E[ρ̃2,s, s < σ̃ ∧ ζ̃] ≤ CE[ρ̃1,s, s < σ̃ ∧ ζ̃] for all s ∈ [0, 1 ∧ t].

Then, there is a constant C > 0 such that, for all s ∈ [0, 1 ∧ t] and sufficiently small ρ̃0 > 0,

(92) E[ρ̃1,s, s < σ̃ ∧ ζ̃] ≤ Cρ̃2
0/
√
s

and

(93) P(ζ̃ < s ∧ σ̃) ≤ Cρ̃2
0.

Proof. If we regard the process (ρ̃1,τ , ρ̃2,τ ) as a process in the first quadrant, the equations in (90)
give the property that near the axes the process behaves as a Brownian motion.

To give a bit more insight, what we want to do is to compare E[ρ̃1,s, s < σ̃] with the analogous
quantity in which ρ̃1 and ρ̃2 run as independent Brownian motions.

In the simplest case, (ρ̃1, ρ̃2) is
√

2 times a planar Brownian motion started at (ρ̃0, ρ̃0) and
E[f(ρ̃1,s, ρ̃2,s), s < σ̃] is simply ϕ(s, ρ̃0, ρ̃0), with ϕ being the solution to the following PDE on
the upper-right quadrant Ω = {(x, y), x, y > 0},

(94)


∂tϕ = ∆ϕ

ϕ(t, (x, y)) = 0, (x, y) ∈ ∂Ω

ϕ(0, (x, y)) = f(x, y), (x, y) ∈ Ω.

This solution can be written in terms of the heat kernel, which we discuss now. On the half line,
the heat kernel for the Laplacian with the Dirichlet boundary condition is given by

ht(x, y) =
1√
πt

(
e−

(x−y)2
t − e−

(x+y)2

t

)
for all x, y, t > 0. On Ω, the heat kernel with the Dirichlet boundary condition is simply

ht((x1, x2), (y1, y2)) = ht(x1, y1)ht(y1, y2).

Turning back to the PDE (94), the solution is given by

ϕ(t, x, y) =

∫ ∞
0

∫ ∞
0

ht((x, y), (x1, y1))f(x1, y1)dx1 dy1.
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For the case we are most interested in, namely f(x, y) = x, the solution above can be computed as

ϕ(s, x, y) = xΦ

(
y√
s

)
with Φ(x) =

2√
π

∫ y

0
e−u

2
du.

Now we go back to the system (90) and take ϕ(s− τ, ρ̃1,τ , ρ̃2,τ ) as a semimartingale which, from
Itô’s formula and ∂tϕ = 1

2∆ϕ, becomes

dϕ(s− τ, ρ̃1,τ , ρ̃2,τ ) =∂xϕdρ̃1,τ + ∂yϕdρ̃2,τ − ∂tϕdτ +
1

2
∂2
xxϕd〈ρ̃1〉τ + ∂2

xyϕd〈ρ̃1, ρ̃2〉τ +
1

2
∂2
yyϕd〈ρ̃2〉τ

=Mτ +O(1)

(
Φ

(
ρ̃2,τ√
s− τ

)
+

ρ̃1,τ√
s− τ

Φ′
(

ρ̃2,τ√
s− τ

))
dτ

+
ρ̃1,τO(ρ̃2,τ )Φ′′(

ρ̃2,τ√
s−τ )

s− τ
dτ +

O(ρ̃1,τ + ρ̃2,τ )√
s− τ

Φ′
(

ρ̃2,τ√
s− τ

)
dτ,

where Mτ is a martingale. Since Φ′ and yΦ′′(y) are bounded, we deduce that the drift in the above
is bounded in absolute value by C(ρ̃1,τ+ρ̃2,τ )√

s−τ . Now replacing τ by τ ∧ σ̃ ∧ ζ̃ and evaluating at τ = 0

and τ = s, we are led to

E[ρ̃1,s, s < σ̃ ∧ ζ̃] ≤ E[ϕ(s− s ∧ σ̃ ∧ ζ̃, ρ̃1,s∧σ̃∧ζ̃ , ρ̃2,s∧σ̃∧ζ̃)] ≤ ϕ(s, ρ̃0, ρ̃0) + CE

[∫ s∧σ̃∧ζ̃

0

ρ̃1,τ + ρ̃2,τ√
s− τ

dτ

]

≤ Cρ̃0Φ

(
ρ̃0√
s

)
+ C

∫ s

0

E[ρ̃1,τ + ρ̃2,τ , τ < σ̃ ∧ ζ̃]√
s− τ

dτ.

Denote for simplicity f(s) = E[ρ̃1,s, s < σ̃ ∧ ζ̃] and g(s) = Cρ̃0Φ
(
ρ̃0√
s

)
. Now condition (91) implies

(95) f(s) ≤ g(s) + C

∫ s

0

f(τ)√
s− τ

dτ.

This functional inequality is interesting enough to be treated separately, and so we do this for-
mally in the following.

Lemma 20. Assume f, g : [0, t]→ [0,∞) are bounded, continuous functions such that for all s ∈ [0, 1∧ t]

(96) f(s) ≤ g(s) + C

∫ s

0

f(τ)√
s− τ

dτ.

If g(s) ≤ Cρ2/
√
s for all s ∈ [0, 1 ∧ t], then

f(s) ≤ Cρ2/
√
s for all s ∈ (0, 1 ∧ t].

Proof. Rewrite (96) in the form

f(s) ≤ g(s) + C
√
s

∫ s

0

f(τ)√
s− τ

dτ = g(s) + C
√
s

∫ 1

0

f(sw)√
1− w

dw.

Now introduce the random variableW with density 1
2
√

1−w and observe that the right hand side of
the above equation becomes g(s) +C

√
sE[f(sW )]. Hence, the inequality at hand can be re-written

as
f(s) ≤ g(s) + C

√
sE[f(sW )].
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Iterating this inequality, one can prove that if we pick an iid sequence W1,W2, . . . with the same
distribution as W , then for any n ≥ 1,

f(s) ≤
n∑
k=0

(C
√
s)kE[

√
W1

√
W1W2 . . .

√
W1W2 . . .Wk−1g(sW1W2 . . .Wk)]

+ (C
√
s)nE[

√
W1

√
W1W2 . . .

√
W1W2 . . .Wnf(sW1W2 . . .Wn+1)].

The random variable W has moments

E[W k] =

√
πΓ(k + 1)

Γ(k + 3/2)
for all k > −1.

Particularly important is the case of k = −1/2, so that 1√
W

is integrable, and in fact E[1/
√
W ] =

π/2. It is an elementary task to obtain from this that, for some constant C > 0,

E[W k] ≤ C/
√
k for all k > 0.

Since g is bounded, the series
∞∑
k=0

(C
√
s)kE[

√
W1

√
W1W2 . . .

√
W1W2 . . .Wk−1g(sW1W2 . . .Wk)]

is absolutely convergent and (C
√
s)nE[

√
W1

√
W1W2 . . .

√
W1W2 . . .Wnf(sW1W2 . . .Wn+1)] goes

to 0 as n→∞. Consequently,

f(s) ≤
∞∑
k=0

(C
√
s)kE[

√
W1

√
W1W2 . . .

√
W1W2 . . .Wk−1g(sW1W2 . . .Wk)].

If g(s) ≤ Cρ2/
√
s, the above yields

f(s) ≤ C ρ2

√
s

∞∑
k=0

(C
√
s)kE

[√
W1

√
W1W2 . . .

√
W1W2 . . .Wk−1√

W1W2 . . .Wk

]
=
Cρ2

√
s
,

where we used the decay of the moments of W together with the fact that 1/
√
W is integrable to

justify that the series is convergent. �

The rest of the proof of (92) follows now from Lemma 20.
We now turn our attention to (93) and observe that, from (90), we easily deduce that

dρ̃1ρ̃2 = ρ̃1dρ̃2 + ρ̃2dρ̃1 + d〈ρ̃1, ρ̃2〉τ
= dMτ +O(ρ̃1 + ρ̃2)dτ

with Mτ a martingale. Using this at the times τ = 0 and τ = s ∧ σ̃ ∧ ζ̃ with 0 ≤ s ≤ 1 ∧ t and
integrating, we get

r̃2
0P(ζ̃ < s ∧ σ̃) ≤ E[ρ̃1,s∧σ̃∧ζ̃ ρ̃2,s∧σ̃∧ζ̃ ] ≤ ρ̃

2
0 + CE

[∫ s∧σ̃∧ζ̃

0
(ρ̃1,τ + ρ̃2,τ )dτ

]

≤ρ̃2
0 + C

∫ s

0
E[(ρ̃1,τ + ρ̃2,τ ), τ < σ̃ ∧ ζ̃]dτ

(91)&(92)
≤ ρ̃2

0 + C

∫ s

0

ρ̃2
0√
τ
dτ = Cρ̃2

0.

which is what we needed. �
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Now we go back to (89). We cannot use Theorem 19 to conclude that E[ρ1,s, s < σ∧ζ] ≤ Cρ2
0/
√
s

because the equations satisfied by ρ1 and ρ2 are not of the form (90). However, if we take ρ̃1,s =

ρ1,se
p̄t−s(λs), ρ̃1,s = ρ1,se

p̄t−s(λs), then (45) and an application of Itô’s formula (followed by several
rearrangements) show that ρ̃1 and ρ̃2 do satisfy (90). In addition, Corollary 17 combined with the
fact that ep̄t−s(λs) is bounded shows that (91) is also satisfied. Therefore, according to Theorem 19,
E[ρ̃1,s, s < σ ∧ ζ] ≤ Cρ2

0/
√
s and this in turn implies

E[ρ1,s, s < σ ∧ ζ] ≤ Cρ2
0/
√
s and

∫ s

0
E[ρ1,u, u < σ ∧ ζ]du ≤ Cρ2

0

√
s.

Using the preceding in (89), we write the resulting equation as

|p̄t(x)− 2p̄t(z) + p̄t(y)| ≤ cρ2
0

e−Ct√
s

+ cρ2
0

∫ s

0

Ht−u√
u
du for any s ∈ [0, 1 ∧ t].

Now dividing both sides by ρ2
0 and then letting ρ0 tend to 0, we arrive at

Ht ≤ c
e−Ct√
s

+ ce−Ct
∫ s

0

Ht−u√
u
du for any s ∈ [0, 1 ∧ t].

From here, the rest is taken care of by the following lemma.

Lemma 21. If H : [0,∞)→ [0,∞) is a continuous function such that, for some constant C > 0,

(97) Ht ≤ c
(
e−Ct√
s

+

∫ s

0

Ht−u√
u
du

)
, 0 < s ≤ 1 ∧ t,

then there are constants k,K > 0 such that

Ht ≤ Ke−kt for all t > 0.

Proof. It suffices to concentrate on the case t ≥ 1.
Let mn = supt∈[n,n+1]Ht and Mn = supt∈[n−1,n+1]Ht. Clearly, mn ≤ Mn and Mn is either mn or

mn+1.
Now, if we take the t which maximizes Ht on [n, n + 1] and use (97), we get that for some

constant C > 0 and any s ∈ [0, 1],

mn ≤ c
(
e−Cn√
s

+
√
sMn

)
.

We want to minimize the right hand side of the above expression over s ∈ [0, 1]. For any a, b > 0,
the minimum of a/

√
s+ b

√
s with s ∈ [0, 1] is attained at ab ∧ 1. Hence

mn ≤ c

 e−Cn√
e−Cn

Mn
∧ 1

+Mn

√e−Cn

Mn
∧ 1

 .

We split the analysis according to the following cases:
(1) Case: e−Cn/2 ≤Mn. This leads first to e−Cn/Mn < e−Cn/2 < 1, and then to

mn ≤ 2ce−Cn/2
√
Mn ≤ 2ce−Cn/4Mn.

This is enough to conclude that we can find a large n1 such that for all n ≥ n1 one gets
mn ≤ Mn/2, which means that we cannot have Mn = mn unless mn = mn−1 = 0. Hence
Mn = mn−1, which in turn implies that for some k > 0

(*) mn ≤ e−kmn−1 if n ≥ n1.
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(2) Case: Mn ≤ e−Cn/2. This yields

(**) mn ≤ e−kn.

Notice that we can arrange the constant k > 0 to be the same in (*) and (**) simply by
taking the smaller.

By combining (*) and (**), we can show that mn decays exponentially fast. Indeed, if there is
n2 ≥ n1 for which the second alternative holds, then mn2 ≤ e−kn2 . Then an easy induction and
use of both alternatives yields that mn ≤ e−kn for all n ≥ n2. On the other hand, if there is no such
n2, that means the second alternative holds, and this means that mn ≤ mn−1e

−k for all n ≥ n1.
This then results in mn ≤ mn1e

−k(n−n1) and thus in the exponential decay. �

This completes the proof of Theorem 18. �

11. Ck CONVERGENCE OF p̄ ON SURFACES WITH χ(M) ≤ 0

In the previous two sections, using the same notation and assumptions, we proved there exists
a constant C > 0 such that

(98) sup
x∈M
|p̄t(x)|+ sup

x∈M
|∇p̄t(x)|+ sup

x∈M
|Hessp̄t(x)| ≤ ce−Ct for all t > 0.

Alternatively stated, p̄ converges to 0 exponentially fast in the C2-norm. In particular, this proves
that the metric gt converges to the constant curvature metric h in the C2-topology, and thus the
curvature of gt converges uniformly to a constant.

We now complete our discussion of the convergence to the constant curvature metric by extend-
ing this to C∞-convergence. The culmination of the last several sections is the following theorem.

Theorem 22. Let M be a smooth, compact surface with χ(M) ≤ 0, with a reference metric h of constant
curvature 0 or −1, and let g0 be a smooth initial metric in the same conformal class as h and with the same
area. Then if we let p̄t for t ∈ [0,∞) be the associated solution to the normalized Ricci flow (as given in
equation (9)), we have that

p̄t → 0 in C∞, exponentially fast,

in the sense that this convergence takes place exponentially fast in the Ck-norm for all positive integers k.
Stated differently, if gt for t ∈ [0,∞) is the family of solution metrics to the normalized Ricci flow (and so
the metrics corresponding to p̄t), then gt → h in C∞, exponentially fast.

Proof. We start with the equation

∂tp̄ = e−2p̄t∆p̄t + r(1− e−2p̄t).

Now we can assume, by induction, that all derivatives of p̄t of order l with 0 ≤ l ≤ k − 1 decay
to 0 exponentially fast as t goes to infinity. In light of the C2-convergence, we may assume that
k ≥ 3.

Taking the kth derivative p̄(k)
t = ∇(k)p̄t, after commuting the Laplacian with the covariant de-

rivative we obtain

(99) ∂tp̄
(k)
t = e−2p̄t∆p̄

(k)
t + 2re−2p̄t p̄

(k)
t +Q

(k)
t

where Qk depends on the lower order derivatives of p̄t, and thus we may assume by induction
that for k ≥ 2,

(100) |Q(k)
t | ≤ ce−Ct.
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The idea now is to write a Feynman-Kac formula for the solution to (99) and get the estimates
from this. Indeed, notice that if xσ is the time changed Brownian motion starting at x which is
defined by (12), then

(101) exp

(
2r

∫ σ

0
e−p̄t−u(xu)du

)
Tσp̄(k)

t−σ(xσ)−
∫ σ

0
exp

(
2r

∫ u

0
e−p̄t−v(xv)dv

)
TuQ(k)

t−u(xu)du

is a martingale, where Tu is the extension to tensors of the parallel transport along the path x|[u,0]

from xu to x0 = x. From the technical side this expression can be seen in a clear way by lifting
the equation (99) to the orthonormal frame bundle, where the lift of p̄(k)

t takes values in a tensor
product space of a fixed 2-dimensional Euclidean space. This is standard in stochastic analysis
and we do not belabor it.

One result of equation (101) is that evaluation at σ = 0 and σ = t gives

p̄
(k)
t (x) =E

[
exp

(
2r

∫ t

0
e−p̄t−u(xu)du

)
Tσp̄(k)

0 (xσ)

]
− E

[∫ t

0
exp

(
2r

∫ u

0
e−p̄t−v(xv)dv

)
TuQ(k)

t−u(xu)du

]
.

(102)

Notice the first consequence of this, namely that |p̄(k)
t | is bounded for r ≤ 0 (which is the case

under consideration). We consider separately the cases r = −1 and r = 0.
Case: r = −1. From the exponential decay of p̄t and the induction hypothesis (the decay of

Q
(k)
t ) it is easy to see that

|p̄(k)
t (x)| ≤ ce−Ct for all t ≥ 0,

and thus the induction is done.
Case: r = 0. For the flat case, we still learn from (102) that p̄(k)

t (x) is uniformly bounded in t
and x. Since the curvature of the underlying metric h is 0 we know (cf. [16, Theorem 8.1]) that the
holonomy groups are trivial (perhaps after lifting to the orientation cover). Stated differently, the
parallel transport along loops is the identity.

To finish the argument, we are going to use the coupling technique we already used for the
gradient estimates. Start with a fixed point x ∈M and a unit vector ξ, and write

(103) p̄kt (x)ξ = ∇ξp̄
(k−1)
t = lim

h→0

Thp̄
(k−1)
t (γ(h))− p̄(k−1)

t (x)

h
,

where here Th is the parallel transport from Tγ(h) to Tx along the geodesic γ started at xwith initial
velocity ξ.

Now we use the martingale representation (101) with k replaced by (k−1) to see that, for x and
y close enough and T the parallel transport from Ty to Tx along the minimizing geodesic,

T p̄(k−1)
t (y)−p̄(k−1)

t (x) = E
[
T Tσp̄(k−1)

t−σ (yσ)− Tσp̄(k−1)
t−σ (xσ)

]
−E

[∫ σ

0

(
T TuQ(k−1)

t−u (yu)− TuQ(k−1)
t−u (xu)

)
du

]
.

Take t ≥ 1 and let σ be 1 ∧ τ with τ the coupling time of xu and yu. Now, because the holonomy
group is trivial, it follows that

E
[
T T1∧τ p̄

(k−1)
t−1∧τ (y1∧τ )− T1∧τ p̄

(k−1)
t−1∧τ (x1∧τ )

]
= E

[
T T1p̄

(k−1)
t−1 (y1)− T1p̄

(k−1)
t−1 (x1), 1 < τ

]
.

From this and the exponential decay of p̄(k−1)
t and Q(k−1)

t , we have

|T p̄(k−1)
t (y)− p̄(k−1)

t (x)| ≤ e−CtP(1 < τ) + e−Ct
∫ 1

0
P(u < τ)du.
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Finally, using the estimate (44), we get

|T p̄(k−1)
t (y)− p̄(k−1)

t (x)| ≤ e−Ctd(x, y) + e−Ct
∫ 1

0

d(x, y)√
u

du = Ce−Ctd(x, y).

Now taking y = γ(h) and considering the limit as h goes to 0 leads to

|p̄(k)
t (x)ξ| ≤ ce−Ct

for any unit vector ξ, which implies the exponential convergence of p̄(k)
t . �
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